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[1] The intraseasonal oscillations (ISOs) in terrestrial biospheric fluxes of carbondioxide (CO2)
over the Indian subcontinent were investigated for the summer monsoon season from June to
September. We utilized two optimized datasets of Net Ecosystem Exchange (NEE) fluxes of
CO2 at a spatial resolution of 1� � 1� grid and at daily time scale for the years 2000–2009.
Seasonally, over the whole of Indian subcontinent, terrestrial biospheric CO2 fluxes were found
to be a net source (sink) during June and July (August and September). Intraseasonal variability
of CO2 fluxes for the two distinct time scales, 30–60days and 10–20days, was extracted with
a spectral harmonic filter. The dominant ISO mode in the CO2 flux over India is at a period
of 60 days or longer during weak monsoons years but at 10–30days for strong monsoon
years. The ISOs of CO2 flux show coherent structures along with corresponding rainfall ISOs at
a 2–3day lag (CO2 lags rainfall) and nearly 3–4day lag with ISOs in surface air-temperature
(CO2 lags air-temperature). The ranges of these lags are consistent in the two data products
examined here. The apparent lags between CO2 flux and rainfall ISOs are found to be induced
by the temperature effects on net primary production (NPP) and ecosystem respiration (RE).
The terrestrial biospheric fluxes over the subcontinent are coherent with the northward
propagating summer monsoon ISOs albeit as a combination of rainfall, available radiation, and
air-temperature. The study offers a mechanistic understanding of variability of terrestrial
biospheric sources and sinks of CO2 over the Indian subcontinent, in tandem with the
intraseasonal variability of the summer monsoon rainfall.
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1. Introduction

[2] The Indian Summer Monsoon Rainfall (hereinafter
referred to as monsoon rainfall) between June and September
contributes to about 80–90% of the annual mean rainfall
over the Indian subcontinent [Mooley and Shukla, 1987;
Mooely and Parthasarathy, 1984; Parthasarathy, 1984]. It
has tremendous influence on the agricultural yield and
hence, the economic development of the country [Gadgil
and Rupa Kumar, 2006; Preethi and Revadekar, 2012].
As for the terrestrial ecosystems, the wet monsoon during
June to late September demarcates the boundary between
generally hot and dry seasons for the plants during the
pre-monsoon from April to May and the relatively dry and
cool season from November onward. During the summer
monsoon season, the terrestrial ecosystem of the subcontinent
responds to the monsoonal precipitation which nurtures

biospheric growth that peaks in September and October
(see NDVI climatological seasonal cycle over the Indian
region from Figure 1).
[3] The monsoon rainfall comprises frequently occurring

wet and dry spells of precipitation generally over a cycle of
10–90 days but have two preferred bands of variability with
periods ranging from 10 to 20 days [Krishnamurti and
Ardanuy, 1980] and 20 to 60 days [Murakami et al., 1984;
Krishnamurti and Subrahmanyam, 1982; Lau and Peng,
1987]. These wet and dry spells of monsoon rainfall denote
the intraseasonal variability of the summer monsoon season.
The intraseasonal variability with 20–60 day time scale
exhibits a northward and eastward propagation [Yasunari,
1979, 1980; Sikka and Gadgil, 1980] while that with the
10–20 day time scale is either stationary or propagates
northward, with a prominent westward propagation over
the monsoon region [Goswami and Ajayamohan, 2001].
The present study deals with the Indian subcontinental
terrestrial biospheric CO2 flux variability associated with
these two distinctively propagating oscillations of 10–20 day
and 30–60 day periodicities in rainfall, hereinafter collectively
referred to as Intraseasonal Oscillations (ISOs).
[4] The hypothesis of a possible connection between the

high-frequency oscillations of terrestrial biospheric CO2

fluxes over the Indian subcontinent with the corresponding
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oscillations of monsoonal precipitation is logical because the
ecosystem is strongly influenced by the fluctuations in rain-
fall and temperature [Wu et al., 2011]. The background
temperature during the summer monsoon is favorable for
the tropical plants to grow. However, the relationship
between rainfall, temperature, and photosynthesis can be
further complicated during prolonged rainfall spells which leads
to decreased solar insolation, impacting the photosynthetically
active radiation (PAR), and thereby inhibiting photosynthesis
and net primary production (NPP) of the terrestrial ecosystem.
The soil moisture and runoff of precipitated water may offer
confounding complications with the ISOs and PAR variability.
Therefore, intrinsic interactions of various components
which can influence the ecosystem may also modulate NPP,
net ecosystem exchange (NEE), and biosphere respiration
(RE) [Braswell, et al., 1997; Xu et al., 2004].
[5] Several prior studies have investigated the connection

between Indian biospheric CO2 fluxes and monsoon rainfall
by modeling them, but generally with less attention to the
monsoon ISO and its variability. For example, Tian et al.
[2003] examined the interannual variability of NPP and
NEE over Asian region. Nayak et al. [2013, 2010] focused
specifically on the interannual variability of NPP over India
from 1981 to 2006 using model simulations. They used the
CASA model of Potter et al. [2003] and calculated

NPP from light use efficiency (LUE) scaled by stress
vectors dependent on temperatures and soil moisture.
The study identified that the country’s annual mean NPP
is strongly correlated with the rainfall variability but
only weakly correlated with temperature variability on
interannual time scales. This suggests that process modeling
of primary production over the Indian subcontinent is
highly sensitive to rainfall during the summer monsoon.
The study also pointed out that the interannual variability
of NPP over India is largest over the low productivity
regions (mixed shrub, grassland), moderate over the agri-
cultural regions, and relatively small over the forest regions.
They also noticed that NPP growth rate over the country
declined with a corresponding increase in the growth rate
of global atmospheric CO2 and thus implying a potential role
for the regional terrestrial ecosystem in the global carbon
cycle. Our study is clearly distinct from these previous
studies in its attempt to investigate the intraseasonal
variability of Indian terrestrial biospheric CO2 fluxes during
summer monsoon.
[6] The examination of terrestrial biospheric fluxes of

CO2 over India is important for estimating the country’s
net biospheric sinks of this greenhouse gas. The carbon pool
for the Indian forests is estimated to be 2026.72 Mt for
the year 1995 [Lal and Singh, 2000]. Estimates of annual

Figure 1. (a) Annual land use data over India from Global Land Cover Characterization (GLCC) data
sets as derived from the 1 km Advanced Very High Resolution Radiometer (AVHRR) data spanning April
1992 to March 1993. The vegetation types are defined by biosphere atmosphere transfer scheme (BATS).
The 20 vegetation types shown here are (1) crop/mixed farming, (2) short grass, (3) evergreen needle leaf tree,
(4) deciduous needle leaf tree, (5) deciduous broad leaf tree, (6) evergreen broad leaf tree, (7) tall grass,
(8) desert, (9) tundra, (10) irrigated crop, (11) semi-desert, (12) ice cap/glacier, (13) bog or marsh, (14) inland
water, (15) ocean, (16) evergreen shrub, (17) deciduous shrub, (18) mixed woodland, (19) forest/field mosaic,
and (20) water and land mixture. (b) Annual mean normalized difference vegetation index (NDVI) obtained
from 1982 to 2000 satellite data. (c) The seasonal cycle of climatological NDVI over Indian subcontinent.
The red line indicates the data from Niwa et al. [2012] but the amplitude is scaled by half.
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carbon uptake increment suggest that the country’s forests
and plantations have been able to remove at least 0.125
petagram carbon (Pg C) from the atmosphere in the year
1995. Assuming that the present forest cover in India will
sustain itself with a marginal annual increase by 0.5 million
hectares in areas of plantations, we can expect the forests
to continue to act as a net carbon sink in the future [Lal
and Singh, 2000]. According to the India State of Forest
Report (ISFR) prepared by the Forest Survey of India,
Ministry of Environment and Forest, Government of India,
the status of total forest cover in India is 675,538 km2 in
2001, 678,333 km2 in 2003, 690,899 km2 in 2009, and
692,027 km2 in 2011, bringing the forest cover up to 21.05%
of geographical area of India [ISFR, 2011].
[7] The motivation for examining the high-frequency

oscillations of terrestrial biospheric CO2 fluxes in response
to monsoon ISOs can be viewed as follows. The global net
sink of CO2 by the terrestrial biosphere is estimated to be
nearly 2 Pg C per year which is approximately one quarter
of the annual mean fossil fuel emissions [Gurney et al.,
2004; Raupach, 2011]. Although this net sink appears
relatively small, the seasonal amplitude of CO2 sources and
sinks themselves is on the order of a few tens of petagram
carbon. A delicate balance between the net source and sink
is thus very important in determining the global budget of
annual mean sink of atmospheric CO2 [Canadell et al.,
2007]. This can equally well be illustrated at regional scales;
for example, based on the data used in this study, the
area-integrated terrestrial biospheric CO2 fluxes over India
have seasonal amplitude of 1.0 Pg C during June to
�1.0 Pg C during September (positive flux corresponds to
a net emission), eliciting that these seasonal amplitudes
are roughly on the order of global net sink of terrestrial
biosphere which itself is nearly 2 Pg C yr�1. Therefore,
the intricate balance between seasonal sources and sinks
of regional CO2 is indeed critical in maintaining the global
average. Any variability of this seasonal cycle (in the pres-
ent context we refer to the intraseasonal variability) of
CO2 is also important in determining the net annual mean.
The response of the monsoon intraseasonal variability to
global warming and the consequent response of the regional
sources/sinks cannot be evaluated without a baseline study
of the CO2 flux variability at ISO time scales such as the
one we present here.
[8] The net terrestrial biospheric CO2 fluxes over the Indian

region during the summer monsoon season exhibit a transition
from a source during June to a sink during September. The
abundant rain water during the August–September season
causes the ecosystem to exceed its NPP over NEE and
respiration in terms of CO2 emission. We note from
observational analysis that (as shown in later sections) the
high-frequency variability is larger during June and
September. Our further analysis in this direction reveals that
India’s terrestrial biospheric fluxes of CO2 exhibit large
scale (organized) intraseasonal variability in tandem with
ISOs of monsoon rainfall.
[9] The following are the major questions addressed in this

paper: (a) Do the terrestrial biospheric CO2 fluxes over India
exhibit any significant intraseasonal oscillations associated
with the variability of monsoon rainfall? (b) How is the ISO
of terrestrial CO2 flux determined? (c) What is its contribution
to the annual mean sources and sinks of biospheric CO2 over

the Indian continent? The rest of the paper is organized as
follows. Section 2 describes data and methods used in this
study. Section 3 presents the results and a discussion is
offered in section 4. The paper is summarized in section 5.
A table with list of common acronyms used in the text is
provided in Table 1.

2. Data and Methods

2.1. Net Ecosystem Exchange (NEE) Data From Carbon
Tracker

[10] We use the terrestrial biospheric CO2 flux data from the
optimized data set provided by the Carbon Tracker (CT)
which is developed and maintained by the Earth System
Research Laboratory (ESRL) at National Oceanographic and
Atmospheric Administration (NOAA) [Peters et al, 2007].
The CT version 2010 is used in this study. This data set
provides optimized terrestrial biospheric CO2 flux estimates
at spatial resolution of 1� � 1� horizontal grids and a temporal
resolution of three hourly time steps from year 2000 to
2009. This data set is produced by an ensemble simulation
and assimilation of global observations of atmospheric
concentrations of CO2 in a transport model. The CT ensemble
data assimilation assumes that the four surface flux modules
(terrestrial biosphere, ocean, fossil fuel, and forest fire emission)
drive the instantaneous atmospheric CO2 concentrations.
The combination fluxes used in CT can be expressed as

F x; y; tð Þ ¼ lFbio x; y; tð Þ þ l Foce x; y; tð Þ þ Fff x; y; tð Þ
þ Ffire x; y; tð Þ (1)

[11] where, Fbio, Foce, Fff, and Ffire represent the biospheric,
oceanic, fossil fuel, and forest fire emissions of CO2. l
represents a set of linear scaling factors applied to the fluxes
and is estimated in the assimilation methodology. These
scaling factors are the final product of the assimilation and
together with the prior fluxes form the optimized estimate
of CO2 fluxes. l is estimated for each week during the
assimilation and assumed constant over this period. The
scaling factor l is spatially divided into 11 discrete land
regions over the global domain. Furthermore, the terrestrial
biosphere is also divided up according to ecosystem types as
well as the geographical location. Thereafter, each of the 11
land regions contains a maximum of 19 ecosystem types
(see CT documentation at http://www.esrl.noaa.gov/gmd/
ccgg/carbontracker/tu-torial.html for more details).
[12] Since the correction to the fluxes is applied only on

a weekly basis, by way of optimizing the l in the CT
assimilation, any variability below this period is solely

Table 1. Acronyms Used in the Text and Their Expansions

ISO Intraseasonal Oscillation
NEE Net Ecosystem Exchange
NPP Net Primary Production
GPP Gross Primary Production
RE Respiration
NDVI Normalized Difference Vegetation Index
CT CarbonTracker
VISIT Vegetation Integrative Simulator for Trace gases
LUE Light Use Efficiency
AVHRR Advanced Very High Resolution Radiometer
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introduced from the prior fluxes. However, here we offer a
caveat that there are no CO2 measurements from the Indian
subcontinent itself that went into constraining the terrestrial
biospheric flux priors used in the CT. Therefore, the
retrieved NEE fluxes over India are constrained where
possible by similar eco-regions north of the Himalayas in
Kazakhstan, Russia, China, and Korea, and also Indonesia
for a small part of India that falls in the Tropical Asia
Transcom domain [Peters et al., 2007]. Since the CT inversion
scheme does not have the atmospheric CO2 data sampledwithin
the Indian subcontinent, the reliability of optimized NEE
largely depends on the reliability of prior fluxes used. There-
fore, in the following, we document the prior fluxes used in CT.
[13] The biosphere model used to produce the prior fluxes

in the CT is the Carnegie-Ames-Stanford-Approach
(CASA) biogeochemical model. The version of CASA used
in CT is that of van der Werf et al. [2003, 2006]. This is
basically an adaptation of CASA model of the 1990s which
are documented in Potter et al. [2003], Field et al. [1995],
and Randerson et al. [1996]. In the work of van der Werf

et al. [2003], the above CASA model has been modified to
account for NEE changes due to fire events. The simulated
CASA used in the prior fluxes of CT thus has impact of fires
both as a reduction in biomass due to fire events and
changes in carbon emissions due to the bacterial decay upon
the mortality of vegetation (but not completely burned)
during fire.
[14] The model was run using input from meteorological

parameters (taken from ECMWF re-analysis) to drive
biophysical processes, as well as satellite observed Normalized
Difference Vegetation Index (NDVI) to track plant phenology.
The NDVI data were taken from AVHRR NDVI. The CASA
model was driven by year specific weather and satellite
observations, including the effects of fires on photosynthesis
and respiration. This simulation gives 1� � 1� grid global
fluxes on a monthly time resolution.
[15] The Net Ecosystem Exchange (NEE) is computed from

the monthly mean CASA Net Primary Production (NPP)
and ecosystem respiration (RE) outputs. Higher frequency
variations (diurnal and synoptic) are added to Gross Primary

Figure 2. Monthly mean CO2 fluxes over continental India during (a) June, (b) July, (c) August, and
(d) September derived for 2000 to 2009 from CT data are shown. The anomalous years 2002 and 2004
are not included in the mean. The transition of CO2 source to sink during summer monsoon rainfall is
highlighted in Figures 1a–1d. Positive values show CO2 sources. Units are in mol m�2yr�1. (c) Seasonal
cycle (line) and daily standard deviations during each month (shades) of area-integrated land-air CO2

fluxes from 2000 to 2009.

Figure 3. Same as Figure 2 but from VISIT data.
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Production (obtained as GPP=2�NPP) and RE (obtained
as RE =NE�GPP) fluxes every 3 h using a simple
temperature Q10 (refer equation (5)) relationship assuming
a global Q10 value of 1.5 for respiration and a linear scaling
of photosynthesis with solar radiation. Instantaneous NEE
for each 3 h interval is thus created as

NEE tð Þ ¼ GPP I;tð Þ þ RE T;tð Þ (2)

GPP tð Þ ¼ I tð Þ
X

GPP =
X

I
� �

(3)

RE tð Þ ¼ Q10 tð Þ
X

RE=
X

Q10

� �
(4)

Q10 tð Þ ¼ 1:5 T2m � T0ð Þ=10:0½ � (5)

[16] where T=2m temperature, I = incoming solar radiation,
t = time, and summations are done over 1month, for each
grid box [Peters et al., 2007]. There is no separation of RE
on autotrophic and heterotrophic level at synoptic and hourly
scales. Therefore, the sudden surges of RE with rain events
(as observed in the tropical forests by Xu et al. [2004]) may
be only empirically represented with corresponding changes
in air-temperature and solar insulations. But RE surges occur
only in the first rain burst but not in the subsequent rain events.
This is perhaps not represented in CT.

[17] It should be noted that the GPP and RE are simulated
in CASA only on monthly time scales and the NEE data at
three-hourly time resolution within each month is estimated
using the simple relation described above. However, the
NEE was corrected on a weekly basis in the assimilation.
Therefore the NEE data can represent signatures on ISO
time scales (7 days or longer) more realistically and they
are not simply arising from the relations shown above. Here,
we reemphasize that there are no CO2 measurements from
the Indian subcontinent itself that help to constrain CASA’s
biospheric flux priors in the CT. One may argue that the
weekly optimization of CASA NEE using inversions of
atmospheric CO2 in CT system is barely affecting the priors
because of this lack of data from the Indian subcontinent.
Nevertheless, a trajectory analysis shows that sensitivity of
Indian landmass CO2 emissions can be sensed at far distances
as a result of the monsoon dynamics [Tiwari et al., 2013].

2.2. Net Ecosystem Exchange (NEE) From Optimized
Visit Model

[18] Vegetation Integrative Simulator for Trace gases
(VISIT) is a prognostic biosphere model [Ito, 2010]. Global
vegetation types are classified into 15 biomes in this model
and they are inferred based on the maps of MODIS land cover
data [Friedl et al., 2002]. The meteorological reanalysis data

Figure 4. Spatial pattern of periodicity (in days) of maximum power of variability of daily fluxes for the
four summer monsoon months from June to September. Patterns are shown for each year separately. The
annual mean rainfall for each year is shown on top right of each panel.
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used to simulate VISIT were taken from the Japanese 25 year
reanalysis (JRA-25)/JMA Climate Data Assimilation System
(JCDAS) [Onogi et al., 2007]. Precipitation bias in JRA-25/
JCDAS was corrected prior to the model simulations based
on the methods of Saito et al. [2011]. In VISIT, NPP is
estimated as GPP�RE, where GPP is estimated from the
following equation:

GPP¼ 0

Z LAI
Pmax LUE PPED

Pmaxþ LUE PPFD
dLAI (6)

[19] Pmax is a seasonally varying function of ground
temperature, intercellular CO2 concentration, and moisture.
LAI is the leaf area index, LUE is the light use efficiency,
and PPED is the photosynthetic photon flux density within
the canopy. The respiration fluxes assume two forms,
Autotrophic (AE) and Heterotrophic (HR) respiration. The
AE is subdivided into growth (AG) and maintenance (AR)
respiration. These are functions of ground temperature,

specificmaintenance respiration rate, andQ10. Themaintenance
respiration assumes the following form:

AR ¼ rmx exp
lnQ10

10
Tg � 15
� �� �

Mx (7)

[20] The growth respiration is given as a function of
carbon translocation rate and specific growth respiration.
The heterotrophic respirations are subdivided into humus
and litter groups, both of them varying with soil temperature
at 10 cm and 2m, respectively, in addition to their soil
moisture-dependent variability. The VISIT NEE data available
at daily time step from 2000 to 2009 are used in this study.
The spatial resolution is 1� � 1� in the horizontal.
[21] In addition to the conventional prognostic modeling

in VISIT, 13 of the model parameters are optimized
using Bayesian inversion methods (Saito M., A. Ito and S.
Maksyutov, Synthesis modeling of atmospheric CO2

variability and terrestrial biomass with inversion scheme,

Figure 5. The 30–60 day (top) and 10–20 day (bottom) filtered and area-integrated CO2 flux anomalies
from central India (over an area of 72�E–83�E; 18�N–28�N) for the summer monsoon months. Filtering is
applied for each year separately. Units are in PgCyr�1. The blue (red) line represents CT (VISIT) data.
The VISIT data are multiplied by a scale factor of 2 in order to fit its y axis comparable with CT data.
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manuscript submitted to Global Biogeochemical Cycle, 2012,
hereinafter SIM, 2013). These 13 of the model parameters are
optimized in the following way. The VISIT-simulated
NEE (priors) is used to run an atmospheric transport model
to convert fluxes into equivalent atmospheric CO2 mole
fractions. The difference between the observed atmospheric
CO2 mole fractions and that of the model simulations is
minimized with the Bayesian inversion where the control
variables are set as 13 model parameters for 15 biomes in
the VISIT. In a similar way, the same model parameters are
also optimized based on data for annual mean above-ground
biomass and NPP [Maksyutov et al., 2012]. Each of the 13
parameters is optimized separately for the 15 biomes.
[22] Among the 13 model parameters that are optimized,

Q10 is one and its prior global mean value (for 15 biomes) is
set as 2.0. Via the optimization, the Q10 is found to vary from
1.68 to 2.32 according to biome type. The Crop Land (CL)
Q10 has been optimized to 1.85. The CL is one of the dominant
types of ecosystem found over the Indian land mass. This
value is somewhat higher than the recent estimates of global
Q10 (1.4� 0.1) irrespective of the annual mean temperature
[Mahecha et al., 2010]. On the other hand, Atkin et al. [2008]
suggest that the acclimation of RE to varying temperatures
must be represented in global climate-vegetation models by
accounting for a correspondingly varying Q10 especially in
high-temperature biomes (such as the ones that span India).

[23] Here we summarize the key differences between CASA
used in CT and the VISIT model processes. CASA was run
with ECMWF re-analysis on monthly time scales. The sub-
monthly (hourly and synoptic) variability was introduced by
simple relations (equations (2)–(5)). The NDVI data used are
from AVHRR. The VISIT model used JRA-25 meteorology,
13 model parameters are optimized based on Bayesian
inversion with CO2 atmospheric data, above-ground biomass
data, and NPP data. The NDVI used is from MODIS.
The optimized Q10 varied from 1.68 to 2.32 for 15 biomes.
The RE is split into two, to account for the fine details of
respiration pools (equations (6) and (7)). We highlight these
differences in order to show how the different details of
biospheric processes were included in these two models and
hence to validate the results.

2.3. Rainfall Data

[24] For analysis purpose, we made use of daily rainfall
data taken from APHRODITES water resources [Yatagai,
et al., 2009]. This data set is created primarily from data
obtained from rain gauge networks. These data are available
at 0.25� � 0.25� resolution at daily time scale. The 2m tem-
perature data derived from ERA-interim re-analysis for the
period of 2000 to 2009 are also used in this study [Dee
et al., 2011, Simmons et al., 2007].

Figure 6. Spatial pattern of CO2 sources for those days with 1 standard deviation or above amplitudes in
30–60 day filtered CO2 flux anomalies.
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2.4. Power Spectrum Analysis

[25] In order to depict the ISOs in the terrestrial biospheric
fluxes over the Indian region, we carried out a power
spectrum analysis. For each year, the daily CO2 fluxes from
June to September (122 days) at each grid point were
separated into Fourier components and the powers with largest
amplitudes were found. The daily CO2 flux anomalies were
obtained before applying the Fourier filtering in order to
remove the red noise in the resulting spectra. Here, the
anomalies were found by removing the first three harmonics
(annual, semi-annual, and quadra-annual cycles) of CO2

fluxes from each grid point for each year.

3. Results

[26] In Figure 1, we show the vegetation cover over India
classified into 20 types according to the Global Land Cover
Characterization (GLCC) data sets as derived from the 1 km
Advanced Very High Resolution Radiometer (AVHRR)
data spanning April 1992 to March 1993 (more information
regarding GLCC data sets can be found at http://edcdaac.
usgs.gov/glcc/glcc.html). Throughout central India, the
crop/mixed farming dominates the land cover type. The
vegetation yield of the region thus heavily depends on
the net summer monsoon rainfall [Gadgil and Rupa
Kumar, 2006; Preethi and Revadekar, 2012]. The second

largest vegetation type in the central India is forest cover.
The irrigated crop is largely distributed over the southeastern
peninsular region where the summer monsoon rainfall is
relatively low. The figure also shows the climatological
mean normalized difference vegetation index (NDVI) during
1982–2000. Figure 1b shows the annual mean NDVI over
the Indian subcontinent and Figure 1c shows its seasonal
cycle. The country’s overall vegetation growth increases
from June and peaks in September and October.

3.1. Seasonal Cycle of NEE Over India

[27] Figure 2 shows the monthly means of the climato-
logical land-to-atmosphere CO2 fluxes for the four summer
months during monsoon rainfall, derived from CT between
2000 and 2009 (Figure 2a). In this climatology, the
anomalously dry years (i.e., 2002 and 2004) were excluded.
The fluxes are positive (from land to atmosphere) during
June and July, generally throughout India with a peak
amplitude of 50mol m2 yr�1. The monsoon rainfall over
India typically starts in June and matures in July
[Goswami, 2005]. A typical feature of CO2 fluxes during
June and July is that the terrestrial ecosystem NPP does
not exceed respiration resulting in a positive NEE during
this period (interpreted from the positive values of CO2

fluxes in Figures 2a and 2b). On the other hand, from early
August to September, the terrestrial biospheric fluxes over
India dramatically shift to a sink over almost the entire

Figure 7. Same as Figure 6 but for those days with �1 standard deviation or below CO2 sinks.
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continent with peak amplitude of 30molm2 yr�1 (Figures 2c
and 2d). The largest sink is found over central India
during September.
[28] Figure 2e shows the area-integrated terrestrial biospheric

CO2 fluxes from Indian subcontinent during each month from
2000 to 2009. The shade enveloping the line is the daily
standard deviation during each month calculated with respect
to the corresponding monthly climatological mean. The
seasonal cycle of area-integrated CO2 flux shows a peak
emission during June–July, changes to a steep reduction in
source, and then turns to a strong sink during late September.
The daily standard deviation shows that the strongest high-
frequency variances (i.e., sub-monthly variability) occur during
June and July when the CO2 flux is strongly positive and during
September when the CO2 flux is strongly negative.
[29] The seasonal cycle of NEE from CT data was

compared with that derived from the atmospheric inversion
study of Niwa et al. [2012] for the period between 2006 and
2008 (Figure 2e, red line, amplitude is scaled by half). In
this inversion, the aircraft-observed atmospheric CO2 data
collected by Japanese airliner were also used in addition
to the CO2 data used in CT inversion. The inclusion of
aircraft-observed CO2 data into the inversion has reduced the
posterior error of NEE from the Indian region by 30–40%
[Niwa et al., 2012]. The seasonal cycle of NEE from CT and
Niwa et al. [2012] compares fairly well although minor phase
shift is visible.

[30] Figures 3a–3e show the corresponding spatial and
seasonal cycle of NEE over India obtained from the VISIT
optimized data. The spatial pattern of NEE from the VISIT
data from June to September shows similar features as in
CT. The June–July area-wide sources and August–September
area-wide sinks are nearly identical between the two data
sets compared here. However, VISIT shows high values
of terrestrial sinks in the foothills of Himalayas and the
northern and northeastern parts of India. These values have
been masked, and an area integral is shown in Figure 3e.
The seasonal cycle and sub-monthly standard deviations
are comparable in the two data sets. However, VISIT shows
a weaker seasonal cycle and a stronger sub-monthly
variability. The strong emission during March to May
clearly seen in CT is barely visible in VISIT. The delicate
balance of carbon flows between terrestrial ecosystem and
atmosphere is rather complex, and the two models represent
these complex biospheric processes in their own way. The
VISIT NEE shown here is a reasonable reproduction of
the same reported in Niwa et al. [2012].

3.2. ISOs of CO2 Fluxes Over the Indian Subcontinent

[31] Figure 4 shows the periods (in days) at which the
spectral power is maximum at each grid point and is shown
separately for individual years (see section 2.4 for methods
of power spectrum analysis). Majority of the regional CO2

fluxes over India display a clear intraseasonal oscillation

Figure 8. Same as Figure 6 but for 10–20 day filtered CO2 flux anomalies.
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with a period of ~60 days. Notably, this cycle of variability
is spatially dominant especially when the monsoon rainfall is
relatively weak or when it is a drought year. For a comparison
of monsoon rainfall strength in terms of rainfall, Figure 4 is
provided with the annual mean monsoon rainfall received dur-
ing each year. For instance, the year 2002 was a typical drought
year for the monsoon rainfall [Valsala and Ikeda, 2005] and
was dominated by a 60 day or longer periodicity in the ISO
of the CO2 fluxes. On the contrary, year 2007 had an above-
normal monsoon rainfall and was characterized by relatively
higher frequency variability in the CO2 fluxes and with more
heterogeneous structure in space. The corresponding analysis
using the VISIT NEE fluxes also showed similar results (figure
not shown). The VISIT NEE flux intraseasonal variability is
compared in the following paragraphs.
[32] The most general feature visible in Figure 4 is that the

regional CO2 fluxes possess a clear ISO signature with the
period ranging from 10 to 60 days. Based on this information,
we further applied a harmonic filter to extract the variability
between two distinct bands, namely a 10–20 day band and
30–60 day band. The following part of this section describes
the variability of CO2 fluxes in these two bands.
[33] Figure 5 shows the intraseasonally filtered CO2

flux anomalies from the central Indian region (spanning
72�E–83�E and 18�N–28�N) for each year from 2000 to
2009 for the summer monsoon season. The choice of this
region was made based on previous studies [Rajeevan

et al., 2010; Pillai and Sahai, 2012] in which this region
was found to represent the essence of the ISOs of monsoon
rainfall. In Figure 1, we noted that this box comprises
largely of vegetation consisting of crops and mixed farming
and to some extent also the forest cover. The anomalies are fil-
tered for two distinct bands as stated above. Hereinafter, the
positive (negative) anomalies mean a source (sink) of CO2 at
ISO time scales only, while the mean value over the whole
month can be either a net source or sink (see Figures 2e and
3e for the seasonal cycle of net NEE over India). The CT data
show that the peak-to-peak amplitude of CO2 flux anomalies
in the 30–60 day mode is nearly 0.6 Pg C yr�1 which is
nearly 30% of the peak-to-peak amplitudes of CO2 fluxes
between June and September. It is worth noting that the
30–60 day mode variability of CO2 fluxes has higher ampli-
tudes than 10–20 day modes (Figure 5). Therefore, the cen-
tral India terrestrial biospheric fluxes may be generally
dominated by a slowly varying 30–60 day mode.
[34] A similar analysis carried out with the VISIT data

showed that the ISO variability is weaker in VISIT compared
to that derived fromCT data. In Figure 5, the VISIT anomalies
are scaled by a factor of 2, to facilitate comparison with a
common y axis. Therefore, the VISIT ISOs suggest only 50%
of the CT amplitude in intraseasonal variability. However,
we note that the daily standard deviation with respect to each
month in Figure 3 shows that VISIT has larger variability in
sub-monthly scales, although its ISOs are weaker.

Figure 9. Same as Figure 7 but for 10–20 day filtered CO2 flux anomalies.
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[35] A striking feature that emerges from Figure 5 is that the
intraseasonally filtered anomalies of terrestrial CO2 fluxes
over central India show consistent variability between CT
and VISIT data sets. This is comforting as far as the process
understanding is concerned at least in terms of two distinctly
different models capturing a nearly identical terrestrial
biosphere response at intraseasonal time scales and thus
should provide good guidance for gathering necessary data
to confirm the results further from observations. Both these
models derive their terrestrial NEE with varying complexities
in the ecosystem processes. For example, the CT uses its
prior NEE on CASA simulated fluxes, whereas the VISIT
is an entirely different ecosystem model (see section 2 for
differentiating the two model processes). Moreover, the
meteorology used to drive these models comes from two
different re-analysis products. Thus, even with different
approach and forcing data, the models yield similar results.
The agreement between the models is visible not only in the
individual year’s ISOs but also in their year-to-year variability.
Therefore, we can confidently assert that the terrestrial
ecosystem over Indian region shows coherent patterns of
variability with summer monsoon variability.
[36] Figures 6 and 7 show the composites of net source

and sink of terrestrial biospheric CO2 fluxes over India
in the 30–60 day band for each year from the CT data.
Similar results were obtained with the VISIT fluxes as
well, although for brevity, we focus our discussion on
only the CT data. The composite is produced by averaging
those events during which the CO2 source (sink) is above

positive (below negative) one standard deviation in the
filtered time series at each grid point. Figure 6 shows that
the intraseasonal “respiration” (i.e., biospheric CO2 emis-
sions) of terrestrial biosphere over the Indian region has
a nearly homogeneous pattern from year to year although
the spatial heterogeneity is quite noticeable. The maxi-
mum amplitude is found over central India. The leeward
side of the Western Ghats (a mountain range along the
western peninsular India), however, has relatively small
amplitude of respiration (in terms of CO2 sources). Figure 7
shows the corresponding CO2 sinks.
[37] In Figures 8 and 9, we show a similar calculation but

for the anomalies filtered for the 10–20 day band. In this case,
the figure depicts high frequency variability of CO2 fluxes
over the Indian continent. A noticeable difference of CO2

variability in the 10–20 day band from that of the 30–60 day
mode is that the former is relatively weak in amplitude and
spatially more homogeneous. This point is also reflected in
Figure 5 where we examined the variability of the spatially
integrated CO2 fluxes over central India. The important
message from Figures 8 and 9 is that the high-frequency
variability of CO2 fluxes over India is weaker and that this
variability may not make a significant contribution to the
net CO2 fluxes.

3.3. Coherence of ISOs of CO2, Rainfall, and Temperature

[38] The NPP of terrestrial biosphere should respond to the
variability in air-temperature, PAR, and rainfall, and all of
these are also a part of the monsoon ISOs. Therefore, in this

Figure 10. The 30–60 day filtered and zonally integrated (over 65�E-95�E) CO2 fluxes (shades) and
daily rainfall (contours).
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section we look for coherent structures of oscillations between
CO2 and other physical parameters that participate in the
summer ISOs. In order to understand the co-variability of
the ISOs of CO2 flux and monsoon rainfall, we calculated
the 30–60 day and 10–20 day band-pass-filtered monsoon
rainfall anomalies from the APHRODITE rainfall data. As
the simplest illustration of coherency between the ISOs of
CO2 flux and rainfall, we show the zonally averaged
precipitation anomalies (filtered) of monsoon rainfall over
India together with the zonally integrated CO2 fluxes
(filtered) over the same region.
[39] Figure 10 shows the 30–60 day band-pass-filtered

anomalies from the CT data. We find that they correlate in
most of the years examined here. Positive anomalies of
CO2 fluxes appear to be correlated with positive rainfall
anomalies. On the contrary, negative anomalies of CO2

fluxes appear to be correlated with negative anomalies in
rainfall. The message we deliver from this analysis is that
respiration exceeds NPP when rainfall anomalies are
positive at ISO time scales, possibly indicating the direct
effect of the deficiency of PAR when organized clouds
shade NPP during the active spells of rainfall. Moreover,
the heterotrophic respiration can surge during sudden rain
events and can contribute to positive NEE [Xu et al.,
2004]. On contrary, NPP exceeds respiration and results in
a net CO2 sink on ISO time scale when rainfall anomalies
are negative (i.e., during break spells) and clear sky condi-
tions lead to increased PAR on intraseasonal scales. While
this is rather counter-intuitive, it should be noted that even
the most severe droughts typically result in overall rainfall

deficiency of ~20% [Goswami, 2005] and thus may not
affect the terrestrial biosphere response severely in terms
of CO2. Therefore, the Indian terrestrial biospheric fluxes
undergo a tandem oscillation at the ISO time scale in
correspondence with variability in rainfall. The amplitude
of this oscillation is about 25% of the mean value during
monsoon rainfall.
[40] In order to investigate whether this coherency is solely

at the 30–60 day band, we also examined the co-variability of
CO2 flux and monsoon rainfall anomalies in the 10–20 day
band. Figure 11 shows that this coherency is equally strong in
the high-frequency mode as well. Therefore, we hypothesize
that such immediate and approximately in-phase response of
CO2 fluxes to the monsoon rainfall may be directly related to
the PAR shielding by the organized clouds during active and
break spells of rainfall (see also equations (2)–(5)). This is
reminiscent of the marine ecosystem organization by the
MJOs as observed in the ocean color data [Waliser et al.,
2005; Jin et al., 2012]. An examination of surface shortwave
radiation to infer the PAR variability on ISO scale follows to
explore the mechanistic links.
[41] In addition to its sensitivity to radiation, the terrestrial

biospheric fluxes are also tied to the variability in the ambient
air temperature. Therefore, we examined the air-temperature
anomalies filtered at these two distinct bands (i.e., 30–60 days
and 10–20 days) which are the intrinsic properties of summer
monsoon ISOs. In this temperature-CO2 analysis (figure not
shown), we found apparent lags between air-temperature
ISOs and CO2 flux ISOs. In order to clearly establish the
lead-lag relations of ISOs of CO2, monsoon rainfall, and

Figure 11. Same as Figure 10 but for 10–20 day mode.

VALSALA ET AL.: INTRASEASONAL CO2 FLUX VARIABILITY

12



air-temperature, we adapted a composite analysis of “break”
and “active” phases of monsoon rainfall as follows.
[42] Two distinct phases of ISO are identified—(a) the

break phase and (b) the active phase. The “break” phase
here is when the ISOs of the monsoon rainfall anomalies
are negative and correspond to positive CO2 anomalies
and air-temperature anomalies with a lag to monsoon
rainfall. We used the “break” phases of monsoon rainfall
as a bench mark to study the distinct positive anomalies of
CO2 on ISO time scales because our goal is to establish
the ISOs of CO2 and their relation to corresponding
variability of monsoon rainfall. The break phases of monsoon
rainfall are identified as in Krishnan et al. [2000]. The
box-averaged outgoing longwave radiation (OLR) over
central India [see Rajeevan et al., 2010] is used as an
identifier of the break spell of the rainfall. The CO2 flux
anomalies for 20 days before and after the break are
identified for each year and all such events are averaged
to find the break composite. The same is repeated with
“active” phases as well. The monsoon rainfall and the 2m
air-temperature as well as surface shortwave radiations were
also composited in a similar manner.
[43] Figure 12 shows a composite of CO2 flux (both from

CT and VISIT data), rainfall, air-temperature, and surface
shortwave radiation (proxy for PAR) anomalies during the
break and active phases of summer monsoon averaged over
the central Indian box. As expected, the CO2 flux and
rainfall anomalies during both the break and active phases
have identical evolution. This is equally visible in both CT

(black solid line) and VISIT (black dash line). However, a
closer examination reveals that the CO2 flux lags the rainfall
by 2–3 days in the case of CT. This lag is slightly shorter
(more or less at 1 day) in the case of VISIT. In order to clarify
the lead-lag relationship between the three parameters
examined here, we also show a lead-lag correlation between
them in the bottom row of Figure 12. In the case of CT data,
the correlation between CO2 and rainfall peaks at 2–3 days
of lag for both break and active phases. Therefore, the
response time of CO2 to rainfall events at ISO time scale
is rather fast (within a matter of 2–3 days), and this property
is visible both in break and active phases of monsoon
rainfall. This may partially point to the lead-lag changes in
PAR, NPP, and both autotrophic and heterotrophic respirations.
This lag has been, however, reduced to 1–2 days in the case
of VISIT data. Such subtle changes between the data are
understandable because of the complexities in the model
processes which couple various physical parameters and plant
phenology in a complex manner. Overall, the agreement
between both the data in the ISO phase evolutions with
air-temperature is rather remarkable and may be indicative
of the robustness of the relation between CO2 and other
parameters on the intraseasonal time scales that are shown here.
[44] The air-temperature has more than 120� of phase lag

with the CO2 flux anomalies at ISO time scales during the
break phase. The correlation between CO2 and air-temperature
peaks at a lag of 4–5 days (i.e., CO2 lags air-temperature)
during the break phase whereas during the active phase
this lag is down at 2–3 days. This is a remarkable change

Figure 12. Break and active phase composites of rainfall with CO2, 2m air-temperature, and surface
shortwave radiation anomalies at corresponding periods from filtered anomalies at a 30–60 day band.
Break and active phases are identified by applying a similar method as Krishnan et al. [2000] and Pillai
and Sahai, 2012]. Day 0 represents a starting of break or active phase. All such events from each year are
averaged to produce the composite. CT (VISIT) data are represented by full (dash) lines. The VISIT data
are multiplied by a scale factor of 2 in top panels in order to fit its y axis comparable with CT data. The
units of CO2 fluxes are in �105 mol s�1. Unit of rainfall is in millimeters. Unit of air-temperature is in
�10�1�C. Unit of shortwave is in �10Wm�2.

VALSALA ET AL.: INTRASEASONAL CO2 FLUX VARIABILITY

13



between active and break phases in response to time scales of
ISOs of CO2 and air-temperature. Atkin et al. [2000] reported
that a similar RE acclimation to short-term temperature
changes occurred on the order of 1–3 days. The PAR
variability is also in phase with air-temperature and therefore
the CO2 flux varies inversely to PAR (see the shortwave
radiation variability in the Figure 12), i.e., when PAR is
positive the biosphere is a sink of CO2 and vice versa on
ISO time scales. This strengthens our hypothesis that direct
shading by organized clouds during monsoon rainfall can
cause CO2 flux variability in the ISO band.
[45] We should note that the differences in the results

between the two data sets are more obvious in the active
phase than in the break phase. The correlation of CO2

with rainfall has a nearly 2–3 day lag in CT, whereas it
is almost in-phase in the case of VISIT. The correlation

with temperature variability in CT is lagged by nearly
2–3 days, but longer (4–5 days) in the case of VISIT.
Again such subtle changes might be expected when
complexities in the model vary, pointing again to the
need for more observations.
[46] The phase differences between the 2m air-temperature

and rainfall anomalies are explained by a mechanistic link
with the ISOs of monsoon rainfall [Krishnamurthy and
Shukla, 2000; Goswami, 2005]. The air-temperature is
colder prior to the break (�20 to 0 days in Figure 12a)
because of the cloud cover and rainfall. By the arrival of
a break in rainfall, the air-temperature rises fairly rapidly
because the cloud free conditions allow more shortwave to
reach the surface. Photosynthesis and respiration increase
with air-temperature. At optimal conditions of temperature
range, photosynthesis overwhelms respiration and causes a

Figure 13. Same as Figure 11 but shown as a space-time section of break and active phases as averaged
zonally (integrated in case of CO2) over India. In the left column, shades (contours) represent CO2 flux
(rainfall). In the right column, shades (contours) represent 2m air-temperature (CO2 flux).
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net sink of CO2 during the break phase. The situation is
opposite during an active phase, i.e., prior to the active
phase, the NEE is a net (weak) sink and transitions to a
source fairly rapidly once the rainfall commences. This again
indicates that the cloud cover and the resulting reduction
in radiation for plant growth are the key for biospheric
response. It is worth noting that during the �20 to 0 day
period of an active phase, NPP is maximized and the CO2 sink
is nearly zero. This may be a combined effect of moisture
loss during the break phase and an increase in respiration.
In most of the plants, respiration increases quite linearly
with air-temperature whereas photosynthesis saturates above
an optimal temperature [Goudriaan et al., 2001].
[47] It is worth examining the lead-lag relation between CO2

and rainfall further. The CO2-rainfall relationship can be
attributed to radiation changes with respect to the changes in
cloud cover during active and break rainfall events. In this
case, an immediate response of CO2 to rainfall variability at
zero-lag is expected. However, the air-temperature (which
itself is lagged with respect to the rainfall on ISO time scales)
may influence NPP and RE. We examined the possibility of
whether the effects of temperature on NEE and RE can lead
to a lagged relation between CO2 and rainfall. We employed
a partial correlation analysis in order to remove the variability
of temperature on CO2 fluxes. Partial correlation selectively
removes the effect of one parameter over the other two when
the three of them are mutually correlated. We found that by
the “removal” of temperature effects, the correlation between
CO2 and rainfall at zero-lag improved to a level that it had at
2–3 days of lag in the ordinary correlation. This is the case
for CT data. The corresponding shift in correlation in VISIT
data is at about 3–4 days of lag. This suggests that the ISO time
scale air-temperature variability may have a “grip” on the
corresponding CO2 flux variability and leads to a lagged corre-
lation between CO2 and rainfall. The mechanism by which the
lag between CO2 and rainfall is induced may be due to
temperature effects. This can be quite different in break and
active phases because in the latter case, the CO2-temperature
lag itself is shorter (2–3 days) than in the former (3–4 days;
see Figure 12).
[48] The area-averaged phase relationship between CO2

fluxes, rainfall, and 2m air-temperature gives the net ISO
response of biospheric CO2 fluxes during both the active and
break phases of the monsoon over central India. In Figure 13,
we illustrate the time-space evolution of this relationship as
zonally integrated CO2 flux anomalies of the composite active
and break phases together with the area-averaged rainfall and
temperature anomalies for the CT data. VISIT also yields simi-
lar results (figure not shown). As stated in the introduction,
ISOs have a northward propagating component especially in
the 30–60day band. This northward migration of ISO can be
seen in Figure 13 from 12�N to 30�N. In response to these
rainfall and temperature migrations, the CO2 flux anomalies
also display a northward propagation. It is interesting to note
that the phase locking of rainfall and CO2 flux anomalies is
apparent throughout the entire latitude range. On the other hand,
the 2m air-temperature shows an out-of-phase relationship with
CO2 flux anomalies (Figure 13). The phase relationship
between CO2, rainfall, and temperature during break and active
phase of ISOs is quite consistent with each other, although some
differences are evident. For example, the break phase evolution
of the intrinsic oscillation of these parameters shows a clear

northward propagation, whereas the corresponding active phase
evolutions are somewhat discontinuous in space. These intricate
differences may also be inherent to the mechanisms of north-
ward propagations of summer monsoon ISOs [Goswami and
Ajayamohan, 2001; Goswami, 2005].

4. Discussions

[49] A few aspects of the ISOs in terrestrial biospheric CO2

fluxes over the Indian subcontinent during the monsoon
rainfall season are identified in this study. Considering the
amplitude of variability at the ISO time scale (25% of the
seasonal mean in the case of CT and up to15% in the case
of VISIT), ISOs play a considerable role in the seasonal
mean CO2 flux variability over India. The prime factor for
this variability may be associated with the direct shielding
of sunlight by organized clouds during the wet phases of
ISOs leading to reduced CO2 sink and vice versa for the
dry phases, with both phases including the role played by
heterotrophic respirations.
[50] Our analyses bring out an unexpected characteristic

of CO2 fluxes during monsoon onsets and breaks; CO2 sink
is stronger during the break phase and is largely driven by
availability of PAR and the cloud effects on surface radia-
tion with a corresponding source in the onset phase where
rainfall is associated with reduction in PAR. In addition to
this process, the heterotrophic respiration also appears to
surge during sudden rain spells which can eventually lead
to a net positive NEE over NPP [Xu et al., 2004]. The net
seasonal variability, however, is related to the integration
of rainfall variability by the terrestrial biosphere where the
onset of the rainy season itself initiates the growth phase
but respiration dominates during June–July and the subcon-
tinent as a whole is a net source of CO2. But as the season
progresses, the growth phase reaches its peak and during
the latter half of the monsoon season, the region acts as a
net sink of CO2.
[51] The regions where the coherent structures of CO2,

rainfall and temperature at ISO time scales are detected are
dominated by crop and mixed farms (Figure 1). The study
brings out an interesting point that the break (active) phases
are generally associated with higher (lower) NPP than a
combination of autotrophic and heterotrophic respiration.
A counterintuitive result is that high NPP during extended
break periods does not translate into high crop yields. A
drought monsoon year directly relates to a poor crop yield
for the country as a whole [Parthasarathy et al., 1988;
Preethi and Revadekar, 2012]. This is generally because
the water stress over the crop yields during drought years
is below the threshold level of relatively extractable water
[Ciais et al., 2005]. The crop yield and photosynthetic rate
are generally poorly correlated [Long et al., 2006a, 2006b].
Increased photosynthetic rate does not imply a high crop
yield because there are other factors such as efficiencies of
light capture and of the conversion of the intercepted light
into biomass and the proportion of biomass partitioned into
grain, etc., that determine the net crop yield during a season.
The variability of the net crop yield differs among different
genotypes of a crop species and also depending on the net
availability of water and nutrients.
[52] The patterns of intraseasonal and interannual variability

in monsoon rainfall are similar to each other [Goswami and
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Ajayamohan, 2001,] since the seasonal meanmonsoon rainfall
is made up of ISOs. The integration of environmental forcing
by the ecosystem confounds the rainfall, PAR, and tempera-
ture forcing and removes such a signature although there is a
clear coherent variability between ISOs in monsoon rainfall
and CO2 fluxes. The reliance of our analysis on the CASA
and VISIT models is unavoidable since observational data
do not allow for the separation of temperature and rainfall
effects. Models clearly tend to be deficient and the impact
of model sensitivities cannot be quantified here. We do
expect that our analyses will serve as basis for model
intercomparisons and also direct data gathering effects to
further understand some of the interesting and counterintuitive
outcomes of our analyses.

4.1. Possible Uncertainties in the Results

[53] Few possible sources of uncertainties in our results
must be noted here. The results based on CT data shown
here are merely based on the CASA model simulations
and to some extent the weekly biases of NEE (subdivided into
11 ecosystem types) are reduced within the CT-assimilation
system (see introduction). This guarantees that the variability
discussed here is bias-corrected at least on a weekly basis
and therefore the 20–60 day variability extracted here is
robust. However, as mentioned in section 2, a questionable
point is how much the CT data utilized the atmospheric CO2

data to constrain NEE over India. CT data include little data
from Indian region to constrain the NEE. Therefore, NEE over
the Indian region mainly relies on the CASA derived fluxes.
This limitation should be kept in mind while interpreting the
results. The only possible constraint that might have entered
the NEE over Indian region would be based on atmospheric
CO2 data from the neighboring stations. This is explained
in section 2.
[54] The additional analysis of VISIT fluxes shows that

the results are robust between the two products. One should
remember that these two models (CASA and VISIT) employ
different complexities in the process modeling of ecosystem
NEE. Even with different schemes, we could obtain the ISO
variability of CO2 that is quite robust in both models. How-
ever, partitioning the NEE variability into NPP and RE is not
free from methodological biases [Reichstein et al, 2005]. For
example, the CASA may miss the huge spike or pulse in
respiration following rain. This is an issue which needs
further attention in semi-arid ecosystems, like those regions
that span in parts of India. These rain induced spikes may
account for 10% of annual carbon cycling [Xu et al., 2004]
and are expected to be short lived but prominent following
the first rain spells of the monsoon. Subsequent rains will
not produce large pulses in respiration. Therefore, compari-
sons with observed NEE (based on eddy covariance
methods) must be used to validate the model results shown
here. At present there is no such data set available from India
but will be available in near future as India is setting up
tower-based observations of CO2 and other boundary layer
parameters in various parts of the country [V. K. Dadhwal,
NRSC, Hyderabad, India, personal communication, 2011].
The need for eddy covariance method is highly relevant in
the context of both the validation of model results and its
application in carbon flux inversion [Chevallier et al.,
2012]. Another source of uncertainty can be the relationship
between NPP, RE, and Q10 used in the methods, which are

subject to vary according to different vegetation types
[Goudriaan et al., 2001]. Smith and Dukes [2012] pointed
out the short-term responses of plant NEE to temperature
are modified by photosynthetic and respiratory acclimation
as well as biogeochemical feedback. Therefore, ISO
variability of NEE may be better represented in models with
such acclimation processes included.

5. Summary

[55] Here, we summarize the major findings of this study:
(a) the terrestrial biospheric CO2 fluxes over India exhibit
a significant (close to 20% of the seasonal amplitude) intra-
seasonal oscillation associated with a variability of monsoon
rainfall; (b) a 30–60 day mode variability in CO2 fluxes is
larger in amplitude than the 10–20 day mode; (c) ~60 day
periodicity is a preferred scale of CO2 flux variability (spatially
homogenous) during a dry monsoon year whereas 20–30 day
periodicity is preferred (spatially inhomogeneous) during a
wet monsoon year; (d) in a break (active) phase, a decrease
(increase) in rainfall is associated with an increase in CO2

sink (source); (e) the mechanism of CO2 response with rainfall
ISOs is explained as the effect of PAR shielding by organized
clouds during active phase and surplus of PAR due to the
absence of cloud during break phase together with the sudden
possible surges in soil respirations during rain bursts in the
active periods; (f) there are coherent structures of CO2 flux,
rainfall, and air-temperature on ISO time scale with CO2

lagging the rainfall by 2–3 days and with air-temperature
lagging by 3–4 days during a break monsoon phase; (g) during
the active monsoon phase the lag of the latter is reduced to
2–3 days; and (h) the lag of CO2 and rainfall relations is inter-
preted as induced by the effects of lags with air-temperature.
These results are confirmed with two data sets. The study, for
the first time, offers a mechanistic point of view of terrestrial
biospheric CO2 fluxes over India and monsoon rainfall on
ISO time scales. In light of the role of ecosystem carbon
dynamics on climate feedback [Heimann and Reichstein,
2008] and projected increase in crop yields in a high CO2

environment [Long et al., 2006a, 2006b], such intrinsic var-
iability of Indian terrestrial biosphere fluxes on ISO time scales
deserves more experimental research. Our study is but a first
step in this direction.
[56] However, we offer a cautionary note that the variability

of biospheric fluxes on intraseasonal time scales is based
mostly on prior first-guess-flux estimates (from CASA).
To some extent, we tried to boost the confidence in our
findings by analyzing the VISIT fluxes as well. Therefore,
new simulations that incorporate CO2 observations from the
Indian subcontinent in the CT may lead to improvements
in the representations of CO2 intraseasonal variability over
the region.
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