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Abstract  20 

With the goal of building an Earth System Model (ESM) appropriate for detection,  attribution 21 

and projection of  changes in the South Asian monsoon, a state-of-the-art seasonal prediction 22 

model, namely the Climate Forecast System version 2 (CFSv2) has been adapted to a climate 23 

model suitable for extended climate simulations at the Indian Institute of Tropical Meteorology 24 

(IITM), Pune, India. While the CFSv2 model has been skillful in predicting the Indian summer 25 

monsoon (ISM) on seasonal time scales, a century-long simulation with it shows biases in the 26 

ocean mixed-layer, resulting in a 1.5ºC cold bias in the global mean surface air temperature, a 27 

cold bias in the sea surface temperature (SST) and a cooler-than-observed troposphere. These 28 

biases limit the utility of CFSv2 to study climate change issues. To address biases, and to 29 

develop an Indian Earth System Model (IITM-ESMv1), the ocean component in CFSv2 was 30 

replaced at IITM with an improved version, having better physics and an interactive ocean 31 

biogeochemistry. A 100-year simulation with the new coupled model (with biogeochemistry 32 

switched off) shows substantial improvements, particularly in global mean surface temperature, 33 

tropical SST and mixed layer depth. The model demonstrates fidelity in capturing the dominant 34 

modes of climate variability such as the ENSO and Pacific Decadal Oscillation. The ENSO-ISM 35 

teleconnections and the seasonal lead-lags are also well simulated. The model, a successful result 36 

of the Indo-US collaboration, will contribute to the IPCC-AR6 simulations, a first from India.  37 

Capsule Summary 38 

This work documents the fidelity of the newly-developed IITM climate model simulations, and 39 

demonstrates its suitability to address the climate variability and change issues relevant to South 40 

Asian Monsoon. 41 
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1. Introduction 42 

 The Ministry of Earth Sciences, Govt. of India and National Ocean and Atmospheric 43 

Administration (NOAA), USA entered into a formal agreement for collaboration to implement 44 

the NCEP weather and seasonal prediction system in India in 2011. Under this collaboration, the 45 

India Meteorology Department (IMD) and National Centre for Medium Range Weather 46 

Forecasts (NCMRWF) implemented the high resolution (T574, L64) atmospheric Global 47 

Forecasting System (GFS) model with 3-DVar data assimilation at IMD for short and medium 48 

range weather forecasts. Also, the coupled ocean-atmosphere model, Climate Forecast System 49 

version 2 (CFSv2) model with a high resolution atmosphere (T382, L64) was implemented for 50 

seasonal prediction at the Indian Institute of Tropical Meteorology (IITM). To address the long 51 

term critical need in India for a climate model that would provide reliable future projections of 52 

Indian monsoon rainfall, IITM planned to build an Earth System Model (ESM) based on the 53 

CFSv2 framework. Further, under the Monsoon Mission (see http://www.tropmet.res.in/) India is 54 

committed to improve the CFSv2 model for providing more skillful predictions of seasonal 55 

monsoon rainfall, which would also benefit the short and medium range predictions at IMD. 56 

Therefore, the extension of the seasonal prediction model to a long term climate model would 57 

establish a seamless prediction system from weather time scales to seasonal and decadal time 58 

scales in India.  In this paper, we describe how the seasonal prediction model has been converted 59 

to a model suitable for long term climate studies. 60 

 61 

  The NCEP CFS (Saha et al. 2006), the predecessor of the CFSv2, used to provide 62 

coupled ocean-atmospheric forecasts since 2004, demonstrated good skill in simulating and 63 

predicting ENSO (Wang et al. 2005; Zhang et al. 2007), and the South Asian summer monsoon 64 
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variability (Achuthavarier and Krishnamurthy 2010; Yang et al. 2008; Pattanaik and Kumar 65 

2010; Chaudhari et al. 2013; Pokhrel et al. 2012, 2013).  With substantial changes compared to 66 

CFSv1, the CFSv2 (Saha et al. 2013) demonstrated better prediction skills for ENSO, the tropical 67 

Atlantic sea surface temperatures (SST), global land precipitation, surface air temperature, and 68 

the Madden Julian Oscillation (Yuan et al. 2011; Weaver et al. 2011; Jiang et al. 2013; Hu et al. 69 

2012). Importantly, exhaustive hindcast experiments on seasonal and extended timescales carried 70 

out at IITM demonstrated that the CFSv2 model was one of the few models that predicted the 71 

general distribution of Indian summer monsoon rainfall during June through September 72 

(henceforth ISMR) and its intraseasonal and interannual variability with statistically significant 73 

skill (Roxy et al. 2012; Chaudhari et al. 2013). 74 

 To address issues related to longer time-scale climate variability, beyond the seasonal 75 

time-scale, a climate model needs to simulate the observed mean climate reasonably well. 76 

Moreover, for a region like South Asia, a realistic simulation of the climatology and variability 77 

of the ISM and the drivers of its variability is imperative. Equally important is the ability to 78 

replicate the observed sensitivity in temperature to the increasing greenhouse gases (GHGs). 79 

However, despite its good seasonal prediction skill, several 100-year simulations carried out at 80 

IITM demonstrated a cold bias in global mean temperature and a lack of the observed sensitivity 81 

to GHG increase in CFSv2,  limiting its utility as a climate change model (e.g. Roxy et al. 2012). 82 

The model also exhibits a dry bias over Indian subcontinent during the June-September (JJAS) 83 

monsoon season, along with a colder-than-observed SST in the Arabian Sea (Roxy et al. 2012), 84 

and eastern tropical Indian Ocean (Chaudhari et al. 2013). Roxy et al., (2012) also noticed a 85 

systematic bias in the thickness of the mixed layer in the ocean component of CFSv2. While 86 

model systematic biases tend to affect the simulation of long-term mean climate as well as long-87 
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term projected trends, improved representation of oceanic processes is one approach towards 88 

minimizing systematic biases (see Semtner and Chervin, 1992).  For example, such an effort has 89 

substantially improved the simulation of many key climate features in GFDL CM2.5 (Delworth 90 

et al. 2012), a state of the art model. These works provide motivation for possible alleviation of 91 

systematic biases in the CFSv2 model through improved representation of  ocean processes in 92 

the coupled model.   93 

 As the first step towards adapting the CFSv2 as an ESM, an ocean model with 94 

biogeochemistry, and a better physics for improving the biases of the current ocean component 95 

in CFSv2 was incorporated. In this study, we document the formulation of the IITM-Earth 96 

System Model version 1 (IITM-ESMv1), and discuss improvements in simulations of various 97 

important ocean-atmospheric processes, and variability.  98 

 The paper is organized as follows. Section 2 describes the model configuration, coupling 99 

strategy, experimental design, and initialization details of the climate simulations. Section 3 100 

presents a comparative assessment of simulated annual mean climate, and biases therein, 101 

between the simulations of CFSv2 and ESMv1. Section 4 describes the fidelity of simulated El 102 

Nino-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), dominant modes of 103 

climate variability on interannual and decadal scales, and teleconnection of ENSO to ISM. The 104 

results are summarized in Section 5.  105 

 106 

2. Brief Description of the IITM-ESMv1 107 

 The IITM-ESMv1 has been developed by replacing the ocean component Modular Ocean 108 

Model [MOM4p0, (Griffies et al. 2004)] of the CFSv2, by MOM4p1 (Griffies et al. 2009) 109 
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retaining the land and atmospheric components.. The MOM4p1 has a better physics compared to 110 

MOM4p0, and also an interactive ocean bio-geochemistry (BGC) component (Dunne et al. 111 

2012). The major differences between the ocean components of IITM-ESMv1 and CFSv2 are 112 

summarized in Annex-I.   113 

 114 

Ocean and sea-ice components 115 

 The ocean component (MOM4p1) in IITM-ESMv1 is a hydrostatic model using 116 

Boussinesq approximation, and has a rescaled geopotential vertical coordinate (Stacey et al. 117 

1995; Adcroft and Campin 2004) for a more robust treatment of free surface undulations.  Key 118 

physical parameterizations include a KPP surface boundary layer scheme of (Large et al. 1994), 119 

which computes vertical diffusivity, vertical viscosity and non-local transport as a function of the 120 

flow and surface forcing. Griffies et al (2009) provide a detailed description about the model 121 

equation, physics, dynamics, time stepping schemes, and further subgrid scale parameterizations. 122 

 The IITM-ESMv1 ocean model has 40 vertical levels from surface to 4500 m, identical to 123 

that of the CFSv2. It has 27 levels in the upper 400m of water column in an attempt to capture 124 

surface boundary layer processes.  Bottom topography is represented by the partial cell method 125 

described by (Adcroft et al. 1997) and (Pacanowski and Gnanadesikan 1998). Both the ocean and 126 

sea ice models use the Arakawa B-grid (Arakawa and Lamb 1977).  The zonal resolution is 0.5° 127 

and the meridional resolution is 0.25° between 10°S and 10°N, becoming gradually coarser 128 

through the tropics, up to 0.5° poleward of 30°S and 30°N. The use of the (Murray 1996) bipolar 129 

grid facilitates removal of the coordinate singularity from the Arctic Ocean domain.  130 
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 The sea ice component of IITM-ESMv1 is the GFDL Sea Ice Simulator (SIS) (Delworth 131 

et al. 2006; Winton 2000), which is an interactive dynamical sea ice model with three vertical 132 

layers, one snow and two ice, and five ice thickness categories.  133 

 134 

Atmosphere and land components 135 

 The atmospheric component of IITM-ESMv1 is based on the NCEP GFS model, and has 136 

a spectral triangular truncation of 126 waves (T126) in the horizontal (~0.9° grid) and a finite 137 

differencing in the vertical with 64 sigma-pressure hybrid layers. It employs the Simplified 138 

Arakawa-Schubert convection scheme, with cumulus momentum mixing. The land surface 139 

model is the Noah LSM, with 4 layers (Ek et al. 2003, p. 200), same as in CFSv2.  Further details 140 

can be availed in  (Saha et al. 2010). 141 

Coupling and initialization 142 

 The component models pass fluxes across their interfaces through an exchange grid 143 

system, which enforces the conservation of energy, mass and tracers. 144 

The atmosphere, land, and sea ice exchange quantities such as, heat and momentum fluxes every 145 

10 minutes, with no flux adjustment or correction. The ocean tracer and atmosphere-ocean 146 

coupling time step is 30 minutes. The individual model components were initialized with 1 147 

December, 2009 initial conditions derived from the NCEP CFS Reanalysis. The model has been 148 

integrated forward for a 100-year period without any changes in radiative forcing. Importantly, 149 

the biogeochemistry and ecosystem modules were switched off to facilitate a comparison of the 150 

simulated climate statistics with those from the CFSv2.  For convenience, we refer to this 151 

simulation as the ESMv1 run. For comparison, we utilize the results from a 100 year run we 152 
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carried out earlier with the CFSv2, which also started with the same initial conditions. Unless 153 

specified, the last 50-years of the simulations from both models are used for the comparison.  154 

 155 

Observation-based datasets used for evaluating the simulations  156 

 For the evaluation of the model simulations, we use the SST data from World Ocean 157 

Atlas (WOA, 2009, Locarnini et al. 2010) and a density-based mixed layer depth data (de Boyer 158 

Montégut et al. 2004). We also use the HadISST1.1 dataset (Rayner et al. 2003), gridded rainfall 159 

data from IMD (Rajeevan et al. 2006) for the period 1930-2010 and gridded monthly rainfall 160 

data based on the TRMM Microwave Imager (TMI; Huffman et al. 2007) for 1998-2012, the 161 

NCEP and National Center for Atmospheric Research (NCEP/NCAR) reanalysis (Kalnay et al. 162 

1996) circulation fields for the period 1980-2010. Global surface air temperature anomalies are 163 

obtained from NASA (Hansen et al. 2006), for the period of 2000 to 2010 and sea ice 164 

concentration data from HadISST (Rayner et al.  2003) for the period 1950-2010 is also utilized 165 

for the study.  166 

The climatology for the ESMv1, and that for the CFSv2 are computed for the last 50 years of 167 

simulation.  The simulated biases for any variable are computed by subtracting the observed 168 

value from the corresponding simulated value. The statistical significance of the bias is estimated 169 

based on 2-tailed S -test.   170 

 171 

3. Mean state in ESMv1 172 

Annual mean surface temperature and SST 173 

 The time evolution of the global mean annual mean surface temperature and SST using 174 

ESMv1 and CFSv2 are examined (Figure 1). During the initial 30 years of the 100-year run, the 175 
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CFSv2 simulations undergo a rapid cooling from a global mean surface temperature (Ts) of 14.4 
176 

oC to 13oC (Figure 1a), around which it lingers thereafter. This value is substantially less than the 177 

observed global Ts of 14.6 oC (Hansen et al. 2006), indicating a bias of at least 1.6 oC in the 178 

simulated global surface temperature. However, the initial cooling of simulated Ts by the ESMv1 179 

is nearly about 0.6 oC (Figure 1a), and the Ts remains around 14.2 oC thereafter.  Importantly, the 180 

drift in the SST simulated by the ESMv1, averaged globally or in tropics,  is only about 0.4 oC, as 181 

compared to an SST bias of 1.4°C in CFSv2  (Figures1b & 1c).  182 

 The spatial map of the annual mean SST bias (Figure 2) indicates that the ESMv1 183 

captures observed features well, at par with several other state-of-art coupled models (Figure not 184 

shown). The spatial map of SST bias, computed as the difference between the observed annual 185 

mean SST from that of the HadISST and over the last 50 years of simulations is shown for 186 

ESMv1 and CFSv2 in Figures 2b and 2c respectively. The 10% level of statistical significance of 187 

-test are shown as contours in Figure 2. The results 188 

confirm a significant reduction in cold bias in the tropics between 30oS to 30oN, also as 189 

evidenced by the RMSE of 0.79 and 0.89 for the ESMv1and CFSv2, respectively.  A similar 190 

reduction of the biases is seen in northern subtropical gyres. One of the potential reason for the 191 

better reduction of cold bias in the regions of northern subtropical gyres in ESMv1 is the use of 192 

the parameterization for the effect of sub-mesoscale mixed layer eddies (Fox-Kemper et al. 193 

2011), which avoids mixed layer depths becoming excessively deep (Hallberg 2003); Figure 4a, 194 

and discussion in the following section). The improvements in ESMv1 have been further 195 

ascertained by comparing the simulations with the WOA (Figures not shown).    196 
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 In both the models, particularly CFSv2, however, the cold bias lingers in the North 197 

Atlantic Current east of Newfoundland, which is a region of very sharp gradients in SST. Small 198 

errors in the paths of ocean boundary currents can lead to such large SST biases (Griffies et al. 199 

2011). While there is a notable and a general improvement in the tropical SST simulation, the 200 

warm bias in the far-eastern Pacific cold tongue, and in the Southern Ocean has increased. We 201 

also note that warm biases are found in the Southern Ocean and in the upwelling region off the 202 

western coast of South America (Fig. 2b and 2c) in both the models, particularly in the ESMv1. 203 

The simulated warm bias in the southern ocean in ESMv1 is higher compared to CFSv2 and is 204 

due to the weaker-than-observed simulated lower level zonal winds (Figure not shown). A re-205 

computation of the SST biases, after removing the mean global SST (Figure not shown) indicate 206 

that the difference between ESMv1 and CFSv2 is mainly reflected in the mean, and the spatial 207 

patterns of both ESMv1 and CFSv2 are nearly the same, with a significantly high pattern 208 

correlation (r=0.9), implying that the large scale features in both the models remains the same. e 209 

We note that most of the CMIP5 models exhibit similar biases  with weaker-than-observed zonal 210 

winds in the southern ocean region (e.g. Fig. 5, Lee and Wang 2014) 211 

 212 

Mean  precipitation    213 

 The distributions of boreal summer monsoon (June-September) precipitation bias from 214 

ESMv1 and CFSv2 are shown in Figure 3. The 10% level of statistical significance of the 215 

-test are shown as contours in Figure 3.  Both 216 

CFSv2 and ESMv1 models reproduce observed precipitation patterns reasonably well, though 217 

they show larger-than-observed precipitation in the tropical western and eastern Pacific and the 218 

South Pacific convergence zone.  However, there is improvement in the oceanic precipitation in 219 
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ESMv1 in comparison with CFSv2, with a reduction of excess oceanic precipitation over the 220 

equatorial Maritime Continent region, eastern equatorial Indian Ocean and western tropical 221 

Pacific Ocean as compared to CFSv2.  222 

 Notwithstanding the improved SST in the tropical and northern Indian Ocean, the ESMv1 223 

simulation also depicts a dry bias over India (Figure 3b).  In terms of interannual variability of 224 

the ISMR, the ESMv1 shows a climatological precipitation rate of 4.3 mm.day-1 with a standard 225 

deviation of 0.53 mm.day-1 giving a coefficient of variation (the variability in relation to the 226 

observed mean) of 9%. The corresponding statistics for the observations are 6 mm.day-1, 0.48 227 

mm.day-1 and 8%, respectively. These results suggest a moderate improvement in the interannual 228 

variability of the land precipitation with respect to CFSv2, for which corresponding values are 4 229 

mm.day-1, 0.5 mm.day-1 and 7.5%, respectively. The ESMv1 also shows slight improvement in 230 

terms of intensity and propagation characteristics of monsoon intra-seasonal oscillation (figure 231 

not shown).  232 

 233 

Ocean mixed layer and subsurface characteristics 234 

 One major difference between the ESMv1 and CFSv2 is that the former employs the 235 

scheme (Simmons et al. 2004) for interior mixing along with mixed layer re-stratification by the 236 

sub-mesoscale eddies (Fox-Kemper et al. 2008, 2011), as compared to the prescribed vertical 237 

diffusivity (Bryan and Lewis 1979) in the latter. To diagnose the role of such differences, we 238 

compare the simulated bias in annual mean ocean mixed layer depth (MLD) with respect to 239 

observations (Figure 4).  240 

 In general, the bias in the annual mean MLD is larger for CFSv2 (Figures 4b) compared 241 

to ESMv1 (Figure 4a). Significant improvement is seen in the tropical oceans especially in the 242 
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Arabian Sea and Bay of Bengal in ESMv1 simulations. The 10% level of statistical significance 243 

-test are shown as contours in Figure 4.   Notably, 244 

Roxy et al. (2012) found that large biases of MLD in CFSv2 in the Arabian Sea during the 245 

summer monsoon season lead to an exaggerated SST-precipitation relationship. Indeed, 246 

improvements in the ESMv1 simulated MLD and SST also reflect an improvement of 247 

precipitation in the tropics (Fig. 3). We however, note a deeper-than-observed MLD in the region 248 

of northern subtropical gyres, and shoaling in the southern ocean in simulations by both models 249 

(Fig. 4a and 4b). The southern ocean shoaling is relatively larger in ESMv1 simulation, and 250 

consistent with the warm SST bias over the region (Fig. 2b).  Our sub-surface analysis shows 251 

that the warmer temperatures extend deeper in CFSv2 than WOA, and ESMv1, as shown by the 252 

position of the 4 C isotherm in the zonally-averaged vertical profiles of temperature (Figure 4c-253 

e). This is also seen in all the three major individual ocean basins (Figure S1). This implies that 254 

pumping of heat away from the surface into deeper layers of the ocean takes place in the CFSv2, 255 

resulting in the cooling of surface and warming the ocean below.  256 

 257 

4. Dominant Pacific modes of variability and interactions with Indian summer monsoon  258 

 The Pacific Ocean exhibits substantial temporal and spatial variability. The large size of 259 

the basin facilitates unique atmosphere-ocean interannual coupled variability in the tropics, 260 

which manifests as the El Niño/Southern Oscillation (ENSO; Rasmusson and Carpenter 1983). 261 

ENSO affects global climate and weather conditions such as droughts, floods (Ropelewski and 262 

Halpert 1987; Trenberth et al. 1998; Wallace et al. 1998; Ashok et al. 2007) and has significant 263 

impact on the Asian summer monsoon (Sikka 1980; Webster et al. 1998; Wallace et al. 1998; 264 

Kumar et al. 1999; Krishnamurthy and Goswami 2000; Lau et al. 2000; Ashok et al. 2004; 265 
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Shukla 1995; Keshavamurty 1982).  In this section, we evaluate the fidelity of the simulated 266 

ENSO and its interaction with Indian summer monsoon. We also focus our attention on the 267 

fidelity of the simulated Pacific Decadal Oscillation (PDO). We use the last 75 years of ESMv1 268 

and CFSv2 simulations, and qualitatively compared them with statistics from the 75 years (1935-269 

2010) of HadISST data.  270 

 271 

El Niño/Southern Oscillation (ENSO) 272 

 The largest observed SST variability (Figure 5a) is localized across the central-eastern 273 

equatorial Pacific, and is predominantly associated with the canonical ENSO. The models 274 

qualitatively reproduce the basic pattern of the observed SST anomaly variability. The 275 

coefficient of variation (contours) in Figure 5 indicates that the interannual variability is about 276 

5% of the mean in observation and is well captured in ESMv1.  However, the simulated variance 277 

in CFSv2 is significantly weaker as (Figure 5c) compared to the observations.  The ESMv1, on 278 

the other hand, performs better both in terms of the magnitude and the extension of the variance 279 

maxima from the east through the dateline in the equatorial Pacific (figure 5b). In the CFSv2 280 

simulations, the maximum variance is confined mostly to the eastern portion of the eastern 281 

equatorial Pacific. This is consistent with slightly flattened thermocline slope from central to 282 

eastern equatorial Pacific in CFSv2 compared to ESMv1 (Fig 5d).  However, it is to be noted 283 

that the EMSv1 slightly overestimates the westward extension of the variance in comparison 284 

with observations and CFSv2. The thermocline is also relatively shallow in the west and deeper 285 

in the east for ESMv1, showing less improvement with respect to CFSv2. 286 

 In order to illustrate the fidelity of the spatial pattern of inter-annual variability associated 287 

with ENSO, the gravest EOF pattern for boreal winter (December-February) SST anomalies over 288 
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the Pacific from the HadISST data and that from two models are presented in Figure 6.  The 289 

horseshoe pattern in the Pacific associated with the observed ENSO variability, with unipolar  290 

loadings  in the central and eastern equatorial Pacific, and  oppositely signed loadings west of the 291 

dateline (Fig. 6a) is qualitatively captured by both the models (Figures 6b and 6c).  The 31.5% 292 

variance explained by the EOF1 from the ESMv1 is reasonably close to corresponding value of 293 

37% from the observations. The corresponding explained variance from the CFSv2 is slightly 294 

smaller, at 29.5%.  295 

 The time-mean global wavelet spectrum from a wavelet analysis on the observed PC1, 296 

which is associated with ENSO, shows a broad peak in the range of 2 7 years, with maximum 297 

power at ~5 years (Fig. 7d). Both models capture this broad peak reasonably well (Figures 7e & 298 

7f). The ESMv1 also exhibits a decadal modulation of interannual variability (Figure 7b, 7e), 299 

similar to the observations (Figure 7a). Though longer time series are required to adequately 300 

characterize the ENSO (Wittenberg 2009), many of the simulated ENSO events appear to be 301 

episodic, spanning a range of frequencies over the course of one or two events.  302 

 303 

ENSO-monsoon relationship in the coupled simulations 304 

 The ENSO-monsoon teleconnection, to a good extent, depends on the Walker circulation 305 

to deliver the Pacific SST signal to the Indian Ocean and Indian land sector (Krishnamurti 1971; 306 

Shukla and Paolino 1983; Webster and Yang 1992). Hence, for a better representation of the 307 

Indian summer monsoon and its variability, a model should adequately reproduce the spatial, 308 

seasonal, interannual and decadal aspects of the ENSO monsoon connection.  309 
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 We next compare the simulated ENSO-monsoon teleconnection in the climate 310 

simulations of ESMv1 and CFSv2 with one another, and also with that from observations. Figure 311 

8 shows the lead lag correlation between the ISMR and the monthly Niño-3.4 index. This will 312 

give a general idea on the mean ENSO-monsoon relationship, though it may not hold for its 313 

inter-decadal variability as the teleconnection changes on decadal time scales (eg: 314 

Krishnamurthy and Goswami 2000, Kriplani and Kulkarni 1998). The observed simultaneous 315 

negative correlation (Shukla and Paolino 1983) between Niño-3.4 SST and ISMR, along with the 316 

peak correlation after the monsoon, is reasonably simulated by the ESMv1. However, in CFSv2 317 

simulations, the negative correlations unrealistically start developing 12 months prior to the 318 

monsoon season. Further, the correlation peaks just at the beginning of the monsoon season, 2-3 319 

months earlier than observed. In fact, this is a common problem among most of the climate 320 

models, including a significant number of CMIP3 and CMIP5 models (Jourdain et al. 2013; 321 

Achuthavarier et al. 2012).  322 

To understand the spatial variability of rainfall associated with ENSO, we project the 323 

summer monsoon rainfall onto the PC1 obtained from the EOF analysis (Figure 6) of the SST 324 

anomalies. The regression pattern from both the simulations show (Supplemental Figures S2) 325 

below normal rainfall over most the Indian region, with an excess of rainfall over northeast India 326 

similar to the observed pattern (Figure not shown) depicting the role of ENSO on Indian summer 327 

monsoon.  328 

Pacific Decadal Oscillation (PDO) 329 

 The PDO is the dominant mode of inter-decadal variability in the Pacific characterized by 330 

warm SST anomalies near the equator and along the coast of North America, and cool SST 331 
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anomalies in the central North Pacific in its positive phase (Mantua et al. 1997; Zhang et al. 332 

1997; Power et al. 1999). Studies have shown that the PDO-related interdecadal variability can 333 

modulate the ENSO (Wang 1995) and the ENSO-related interannual variabilities.  The PDO, 334 

with a periodicity of 20-30 years is shown to have significant impact on the climate around the 335 

Pacific Ocean and beyond (Krishnan and Sugi 2003; Power et al. 1999). 336 

 Following Mantua et al. (1997) we have performed an EOF analysis of detrended 337 

monthly SST anomalies over the domain 120E-120W; 20N-60N for the  last 75 years of 338 

simulations to explore the simulated the PDO signal.  For comparison, an EOF analysis is also 339 

performed on HadISST data for the period 1935-2010 over the same domain. The EOF1 from the 340 

model and observations are shown in Figures 9. EOF1 pattern from HadISST data, explains 341 

about 30.3% variance, with a unipolar signal in the central North Pacific surrounded by the 342 

oppositely phased loadings hugging along the west coast of North America (Fig. 9a). This is the 343 

distinguishing feature of the warm phase of PDO (e.g. Fig.1, Krishnamurthy and Krishnamurthy 344 

2013).  The corresponding EOF1 from the ESMv1 (Fig9b) captures the pattern and associated 345 

explained variance reasonably. On the other hand, the analogous EOF1 for the CFSv2 (Fig 9c) 346 

explains only 24.4% of total variance, and the spatial pattern shows relatively weak negative 347 

loadings in the north Pacific. This may be associated with the strong cold SST bias in the 348 

subtropical Pacific.  349 

A wavelet power spectrum analysis on the observed PC1 (Fig. 9) indicates a dominant, 350 

and statistically significant, power in the band of 16-32 years (Figures 10a and 10d).  The 351 

ESMv1 successfully reproduces this dominant peak (Figures 10b and 10e). However, in the 352 

CFSv2 simulations, it is weaker and not statistically significant (Figure 10c and 10f).  353 
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                 Further, a regression of the December-February surface winds on to the PC1 indicates an 354 

enhanced counterclockwise wind stress anomalies over the North Pacific (Supplemental Fig. 355 

S3a) associated with the PDO. Such an association is also seen in the simulations from the 356 

ESMv1 (Fig. S3b). The location of the anticyclonic winds and their magnitude are well 357 

simulated. However, the counter-clockwise surface circulation is weaker in CFSv2 simulations 358 

(Fig. S3c) as compared to observation and ESMv1 simulation. These, along with weaker-than-359 

observed westerlies over subtropical Pacific and south-easterlies over North American coast are 360 

consistent with a weak PDO signal.  361 

 362 

PDO and Indian Summer Monsoon 363 

 Krishnan and Sugi (2003) suggest that a warm phase of PDO can amplify the impact of 364 

El Niño, resulting in the weakening of Indian summer monsoon.  Krishnamurthy and 365 

Krishnamurthy (2013) have shown that the PDO is associated with deficit rainfall anomalies 366 

mainly north of 18°N, with stronger anomalies in the eastern central India. Indeed, a regression 367 

of the observed boreal summer monsoon rainfall (Rajeevan et al. 2006), for the period 1935-368 

2010 on to the concurrent PDO index from the HadISST (Fig. 11a) conforms to these earlier 369 

observational works. The corresponding results from the simulations, (Figures 11b and 11c) are 370 

in qualitative agreement with Fig. 11a. However, the regression pattern from the CFSv2 371 

simulation shows a slightly weaker-than-observed signal. 372 

5. Summary and Conclusion 373 

 This paper documents the development of the first prototype of the IITM Earth System 374 

Model (ESMv1). Derived from the NCEP CFSv2, this model is being developed to be used in 375 
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studies on the detection, attribution, and projections of climate change and its impact on the 376 

South Asian region. The effort particularly involved, as a first step towards the development of 377 

the IITM ESM, inclusion of an ocean bio-geochemistry and ecosystem module and improved 378 

physics by replacing the ocean component of the CFSv2.  100-year simulations were performed 379 

with the ESMv1and CFSv2, using the same initial conditions, and compared. The new ocean 380 

formulation has led to a significant reduction of cold atmospheric temperature bias (from 1.5ºC 381 

to 0.6ºC) and SST bias as compared to that in the CFSv2. The improvement in SST is 382 

particularly prominent in the tropical Indian and Pacific oceans. As a result, the precipitation 383 

over the tropical oceans has also improved considerably.   384 

 In addition, the simulations with IITM-ESMv1 also show improvements in the mean state 385 

and near-surface biases in the northern subtropical gyres as well, implying the role of ocean 386 

physics in the coupled climate simulations. Importantly, the model demonstrates a realistic 387 

global mean temperature and reasonable sensitivity to the ambient CO2, an essential pre-requisite 388 

for a climate model to be used for climate change studies.  389 

 In terms of the spatial pattern and the periodicity, the ESMv1 simulations of climate 390 

variability are more realistic as compared to those of NCEP CFSv2. An example is the simulated 391 

PDO signal in CFSv2, which is much weaker than that observed. Importantly, the ENSO-392 

Monsoon relationship in CFSv2 shows an unrealistic strong, negative correlation maximum 393 

between the Indian summer Monsoon rainfall and Niño-3.4 index 6-9 months prior to the 394 

observations, which may result in unrealistic monsoon variations.  This is a common problem in 395 

many of the CMIP5 models (Jourdain et al. 2013). However, the ESMv1 captures the observed 396 

concurrent negative simultaneous correlations between the monsoons and ENSO, as well as a 397 

reasonable lead-lag relationship between these two.  All these features demonstrate the ability of 398 
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the ESMv1 to capture the crucial monsoon-ENSO links, which are important in manifesting the 399 

interannual variability of the South Asian summer monsoon. A companion study (Shikha et al. 400 

2014) also demonstrates that the ESMv1 also simulates a realistic evolution of the Indian Ocean 401 

Dipole (Saji et al. 1999; Webster et al. 1999; Murtugudde 2000) and its variability (figure not 402 

shown).   403 

A preliminary analysis of the simulated Atlantic Meridional Overturning Circulation 404 

(AMOC) indicates (Figure not shown), that the full AMOC has not been yet established in the 405 

simulation, and warrants the extension of the current integration by a few more hundreds of 406 

years. Such a longer run will also result in more robust tropical climate statistics (e.g. Wittenberg 407 

2009) We have also analyzed the distribution of sea-ice concentration (Figure S4)  in the 408 

northern hemisphere from ESMv1 and CFSv2 for January-March (JFM) and June-September 409 

(JJAS). The northern hemisphere sea-ice concentration in ESMv1 is comparable with HadISST 410 

data during JFM, the season when the sea ice coverage is largest in the northern hemisphere, but 411 

it is found to be lower than observations during boreal summer season (JJAS).  Further, the 412 

southern hemisphere sea ice concentration is lower than observed (Figure not sown) and more or 413 

less similar to that of the CFSv2.  Importantly, Huang et al. (2014) note that the low sea ice 414 

concentration in CFSv2 has led to a weaker-than-observed AMOC in CFSv2, and improvement 415 

in sea ice concentration can be achieved by improving the sea ice albedo. Therefore, we plan to 416 

improve the sea ice parameters and also the coupling according to Huang et al. (2014) and 417 

extend the integration further to study the relevance of AMOC changes for the monsoon 418 

variability. 419 
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 The model's fidelity in terms of the mean climate and seasonal cycle simulations, are at 420 

par with those of some other state of art models, the model has yet a few limitations such as a 421 

warm bias in the southern ocean region, which are common across a wide spectrum of the 422 

CMIP5 models (Lee and Wang 2014). Another important issue is that the CFSv2 has a top of the 423 

atmosphere energy imbalance of 6Wm-2, which is fairly constant over a 100-year simulation 424 

(figure not shown). A similar signal is also associated with ESMv1. Since the temperature has 425 

stabilized, the imbalance could be due to some unaccountable source of energy that is not tracked 426 

as part of model integration,  for example, due to the lack of dissipative heating of the turbulent 427 

kinetic energy (TKE, e.g. Fiedler 2007), or neglecting the radiative impact of precipitating 428 

hydrometeors (Waliser et al. 2011). Sun et al (2010), Huang et al. (2007) and Hu et al. (2008) 429 

have pointed out that CFS has low cloud cover, this may be one of the possible reasons for the 430 

top of the atmosphere energy imbalance in ESMv1. In this context, it is worth noting that  the 431 

annual average absorbed shortwave and outgoing long wave radiation across the ITCZ regions 432 

for the ensemble average of CMIP3 GCMs were shown biases as reported by Trenberth and 433 

Fasullo (2010). Trenberth and Fasullo (2010) also find that many of the CMIP3 models poorly 434 

simulate the energy budget in the southern hemisphere. This aspect needs further attention. 435 

Importantly, a recent study by Bombardi et al. (2014) shows that, despite such biases, 436 

retrospective decadal forecasts by the CFSv2 model show high predictive skill over the Indian, 437 

the western Pacific, and the Atlantic Oceans. Another issue that needs further attention is that 438 

despite an improvement in the oceanic precipitation, the dry bias over the Indian subcontinent 439 

associated with the CFSv2 simulations is still seen in the ESMv1 simulations as well.  These 440 

issues will be addressed in the next version of the model. Significantly, a few recent sensitivity 441 

experiments carried out using the CFSv2 model (Hazra et al. 2014) suggest that improving the 442 
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cloud microphysics will alleviate this problem substantially. In addition, parallel efforts are also 443 

towards including an aerosol module into the ESM.  444 

Summing up, the ESMv1 is a promising development to facilitate future projections 445 

relevant to South Asian climate, specifically those that envisage the next 3-5 decades horizon. 446 
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 675 

Figure Captions: 676 

Figure 1.  Time evolution of the globally-averaged annual mean fields (oC) of (a) near surface 677 

temperature (b) sea surface temperature and (c) tropical sea surface temperature (30oS-30oN). 678 

The ESMv1 (CFSv2) simulations are in red (blue). The corresponding annual mean 679 

observational values are 14. 6 oC, 18.6 oC  and 26.1 oC respectively 680 
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Figure 2. Spatial distribution of annual mean SST (oC) from (a) HadISST and the bias for (b) 681 

ESMv1 and (c) CFSv2.  The contours represent 10% level of statistical significance based on 682 

-test. The rms errors for the ESMv1 are, 1.1 oC (global), 0.79oC (30oS-30oN), and for 683 

CFSv2, 1.1oC (global), 0.89oC (30oS-30oN). 684 

 685 

Figure 3. Spatial map of mean summer monsoon precipitation (JJAS; mm day-1) from the (a) 686 

TRMM and the biases for (b) ESMv1 and (c) CFSv2. The contours represent 10% level of 687 

-test.  688 

 689 

Figure 4a. Spatial maps of bias in annual mean mixed layer depth for ESMv1 and (b) CFSv2. 690 

The model results are computed over the last 50 years of simulation. Biases are in meter. The 691 

-test. (c) vertical 692 

distribution of the global ocean zonal mean temperature (°C) from WOA (d)  and (e) same as (c) 693 

except for ESMv1 and CFSv2 respectively. 694 

 695 

Figure 5. Standard deviation of interannual SST anomalies (°C, shaded) for (a) HadISST (b) 696 

ESMv1 and (c) CFSv2. The coefficient of variation (%) are overlaid as contours. (d) depth of 20 697 

oC isotherm (m) in the equatorial Pacific (5oS-5oN) for WOA, ESMv1 and CFS2  698 

 699 

Figure 6. The leading EOF pattern of boreal winter (December-February) SST anomalies (°C) in 700 

the pacific for (a) HadISST data for the period 1935-2010 (b) ESMv1 and (c) CFSv2.  The model 701 

results are computed over the last 75 years of simulations.  702 

 703 
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Figure 7. Time series of wavelet power spectra of the gravest principal component from the EOF 704 

analysis of the pacific winter SST (120oE-80oW,60oN-60oS; see Fig. 6) for (a) HadISST (b) 705 

ESMv1 and (c) CFSv2. The corresponding time-averaged power spectra are shown for (d) 706 

HadISST (e) ESMv1 and (f) CFSv2. 707 

 708 

Figure 8. Lead lag correlations between All Indian Summer Monsoon derived from the IMD 709 

datasets (June-September) rainfall and monthly Nino-3.4 index from the HadISST, for the 1935-710 

2010 period  (black line), ESMv1 (red line), CFSv2 (blue line).  Note that the model results are 711 

computed over the last 75 years of simulations for comparison. 712 

 713 

Figure 9. The leading EOF pattern of detrended monthly SST anomalies (°C) in the north Pacific 714 

(120oE-120oW, 20oN-60oN) (a) HadISST data for the period 1935-2010 (b) ESMv1 and (c) 715 

CFSv2.   The model results are computed over the last 75 years of simulations.  716 

 717 

Figure 10. Time series of wavelet power spectra of the gravest principal component from the 718 

EOF analysis of the northern pacific SST (120oE-120oW, 20oN-60oN; see Fig. 9) for (a) 719 

HadISST (b) ESMv1 (c) CFSv2 and the black contour is the 10% significance level. (d) the 720 

corresponding time-averaged spectra. The dashed line is the 10% significance for the time-averaged 721 

power spectra.  722 

 723 

Figure 11. Spatial map of JJAS rainfall anomalies (mm day-1) regressed on to the gravest 724 

principal component from EOF analysis of northern pacific (120oE-120oW, 20oN-60oN; see 725 
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Figure 9) from (a) Observations (for the period 1935-2010) (b) ESMv1 and (c) CFSv2. The 726 

model results are computed over the last 75 years of simulations.  727 

 728 

Supplementary figures:  729 

Figure S1. Vertical distribution of the global ocean zonal mean temperature (°C) for individual 730 

ocean basins (Pacific : top panel, Indian : middle panel and Atlantic : bottom panel) from (a) 731 

WOA (b) ESMv1 and (c) CFSv2.  732 

 733 

Figure S2. Spatial map of JJAS rainfall anomalies (mm day-1) regressed on to the gravest 734 

principal component from EOF analysis of the pacific SST (120oE-80oW, 60oN-60oS; see Figure 735 

6) from (a) Observation (for the period 1935-2010) (b) ESMv1 and (c) CFSv2. The model results 736 

are computed over the last 75 years of simulation. 737 

 738 

Figure S3. Spatial map of DJF surface wind anomalies (ms-1) regressed on to the gravest 739 

principal component from EOF analysis of the Pacific SST (120oE-120oW, 20oN-60oN; see 740 

Figure 9) from upon the wind anomalies from (a) Observation (NCEP reanalysis) (b) ESMv1 and 741 

(c) CFSv2.  742 

 743 

Figure S4. Sea ice concentration in the northern hemisphere north of 60oN during January-March 744 

(JFM) from (a) HadISST (b) ESMv1 and (c) CFSv2, (d) (e) same as (a)-(c) except during June-745 

August (JJA).  746 

 747 

 748 



Figure 1.  Time evolution of the globally-averaged annual mean fields (oC) of (a) near surface 
temperature (b) sea surface temperature and (c) tropical sea surface temperature (30oS-30oN). 
The ESMv1 (CFSv2) simulations are in red (blue). The corresponding annual mean 
observational values are 14. 6 oC, 18.6 oC  and 26.1 oC respectively 



Figure 2. Spatial distribution of annual mean SST (oC) from (a) HadISST and the bias for (b) 
ESMv1 and (c) CFSv2.  The contours represent 10% level of statistical significance based on 
student’s t-test. The rms errors for the ESMv1 are, 1.1 oC (global), 0.79oC (30oS-30oN), and 
for CFSv2, 1.1oC (global), 0.89oC (30oS-30oN). 



Figure 3. Spatial map of mean summer monsoon precipitation (JJAS; mm day-1) from the (a) 
TRMM and the biases for (b) ESMv1 and (c) CFSv2. The contours represent 10% level of 
statistical significance based on student’s t-test.  



Figure 4a. Spatial maps of bias in annual mean mixed layer depth for ESMv1 and (b) CFSv2. 
The model results are computed over the last 50 years of simulation. Biases are in meter. The 
contours represent 10% level of statistical significance based on student’s t-test. (c) vertical 
distribution of the global ocean zonal mean temperature (°C) from WOA (d)  and (e) same as 
(c) except for ESMv1 and CFSv2 respectively. 



Figure 5. Standard deviation of interannual SST anomalies (°C, shaded) for (a) HadISST (b) 
ESMv1 and (c) CFSv2. The coefficient of variation (%) are overlaid as contours. (d) depth of 
20 oC isotherm (m) in the equatorial Pacific (5oS-5oN) for WOA, ESMv1 and CFS2  



Figure 6. The leading EOF pattern of boreal winter (December-February) SST anomalies 
(°C) in the pacific for (a) HadISST data for the period 1935-2010 (b) ESMv1 and (c) CFSv2.  
The model results are computed over the last 75 years of simulations.  



(a) HadISST (d) 

(b) ESMv1 (e) 

(c) CFSv2 (f) 

Figure 7. Time series of wavelet power spectra of the gravest principal component from the 
EOF analysis of the pacific winter SST (120oE-80oW,60oN-60oS; see Fig. 6) for (a) HadISST 
(b) ESMv1 and (c) CFSv2. Black contour is the 10% significance level. The corresponding time-
averaged power spectra are shown for (d) HadISST (e) ESMv1 and (f) CFSv2. The dashed line 

is the 10% significance for the time-averaged power spectra.  



Year(0)Year(-1) Year(+1)

Figure 8. Lead–lag correlations between All Indian Summer Monsoon derived from the IMD 
datasets (June-September) rainfall and monthly Nino-3.4 index from the HadISST, for the 
1935-2010 period  (black line), ESMv1 (red line), CFSv2 (blue line).  Note that the model 
results are computed over the last 75 years of simulations for comparison. 



  
   

Figure 9. The leading EOF pattern of detrended monthly SST anomalies (°C) in the north 
Pacific (120oE-120oW, 20oN-60oN) (a) HadISST data for the period 1935-2010 (b) ESMv1 
and (c) CFSv2.   The model results are computed over the last 75 years of simulations.  



(a) HadISST

(b) ESMv1

(c) CFSv2

(d) 

(e) 

(f) 

Figure 10. Time series of wavelet power spectra of the gravest principal component from the 
EOF analysis of the northern pacific SST (120oE-120oW,20oN-60oN; see Fig. 9) for (a) 
HadISST (b) ESMv1 (c) CFSv2 and the black contour is the 10% significance level. (d) the 
corresponding time-averaged spectra. The dashed line is the 10% significance for the time-
averaged power spectra.  



Figure 11. Spatial map of JJAS rainfall anomalies (mm day-1) regressed on to the gravest 
principal component from EOF analysis of northern pacific (120oE-120oW,20oN-60oN; see 
Figure 9) from (a) Observations (for the period 1935-2010) (b) ESMv1 and (c) CFSv2. The 
model results are computed over the last 75 years of simulations.  


