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ABSTRACT

Subsurface temperature biases in coupled models can seriously impair their capability in generating skillful

seasonal forecasts. The National Centers for Environmental Prediction (NCEP) Climate Forecast System,

version 2 (CFSv2), coupled model, which is used for seasonal forecast in several countries including India, dis-

plays warm (cold) subsurface (surface) temperature bias in the tropical Indian Ocean (TIO), with deeper than

observed mixed layer and thermocline. In the model, the maximum warm bias is reported between 150- and

200-m depth. Detailed analysis reveals that the enhanced vertical mixing by strong vertical shear of horizontal

currents is primarily responsible for TIO subsurface warming. Weak upper-ocean stability corroborated by

surface cold and subsurface warm bias further strengthens the subsurface warm bias in the model. Excess inflow

of warm subsurface water from Indonesian Throughflow to the TIO region is partially contributing to the warm

bias mainly over the southern TIO region. Over the north Indian Ocean, Ekman convergence and downwelling

due to wind stress bias deepen the thermocline, which do favor subsurface warming. Further, upper-ocean

meridional and zonal cells are deeper in CFSv2 compared to the Ocean Reanalysis System data manifesting the

deepermixing. This studyoutlines the need for accurate representation of vertical structure in horizontal currents

and associated vertical gradients to simulate subsurface temperatures for skillful seasonal forecasts.

1. Introduction

Subsurface characteristics of oceans have recently

become a topic of great concern to climate modeling

groups because of its significantly large role in climate

variability and climate change (Ruiz et al. 2005; Xiang

et al. 2012). This is especially true for the tropical Indian

Ocean (TIO; 208S to 208N, 408 to 1008E), where sub-

surface temperature change shows detectable difference

from that of the surface, both in magnitude and spatial

distribution (Hastenrath and Greischar 1989; Xie et al.

2002). The subsurface in the Arabian Sea and eastern

TIO are generally characterized by warm and deep

thermocline. Meanwhile, the southwest TIO (thermo-

cline dome region) subsurface temperatures are cooler

than the rest of the TIO due to the shallow mean ther-

mocline induced by Ekman pumping. Anomalous sub-

surface warming over the eastern equatorial Indian

Ocean (IO) is reported prior to deficient Indian summer

monsoon years (Krishnan et al. 2006). First, two domi-

nant empirical orthogonal function (EOF) modes of the

TIO subsurface temperature are closely associated with

the Indian Ocean dipole (IOD; Rao et al. 2002) and

El Niño (Sayantani and Gnanaseelan 2015). Subsurface

ocean conditions in the western and eastern IO are im-

portant for predicting IOD events (e.g., Luo et al. 2007).

Strong subsurface temperature variability associatedwith

IOD, Asian monsoon, and the tropospheric biennial

oscillation is established earlier (Loschnigg et al. 2003).
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These studies highlight the crucial role of TIO subsurface

temperatures in influencing the monsoon climate and

variability. Therefore, it is essential to have a realistic

representation of subsurface temperature in coupled

models for a skillful prediction of tropical climate from

seasonal (Krishnan et al. 2006) to decadal time scales

(Dunstone and Smith 2010).

An important concern is the difficulty in depicting the

surface and subsurface temperature variability espe-

cially in the TIO in coupled models (Gildor and Naik

2005). Biases that appear in the ocean subsurface tem-

perature and salinity alter the ocean circulation, sea

level, vertical mixing, and the coupling between ocean

and atmosphere (Brown et al. 2013). A deeper (shal-

lower) thermocline is an indication of warmer (cooler)

subsurface (Neelin and Latif 1998). Thus, accurate

representation of the thermocline depth and subsurface

temperature is important in coupled general circulation

models. In the present study, the characteristics of TIO

subsurface temperature biases (100 to 500m) are ex-

amined in the National Centers for Environmental

Prediction (NCEP) Climate Forecast System, version 2

(CFSv2; Saha et al. 2014), coupled model free run. We

further investigated the mechanisms responsible for the

subsurface temperature bias in the model.

Under theNationalMonsoonMission of India, CFSv2

is selected as an operational model for dynamical

monsoon prediction over the Indian region (http://www.

tropmet.res.in/monsoon/index.php), and this model has

also been widely used for global-scale forecast (Saha

et al. 2014). Identification of biases and their possible

sources would provide the much needed guidance for

further improvement of the model (Chowdary et al.

2014; Goswami et al. 2014). CFSv2 is known to suffer

from strong cold sea surface temperature (SST) bias

over the TIO (De et al. 2016; Chowdary et al. 2016a).

The recently developed Earth System Model based on

CFSv2 framework, despite having improved ocean phys-

ics, also displayed similar cold SST bias over the TIOwith

considerable improvements elsewhere (Swapna et al.

2015). Some studies pointed out that the mixed layer bias

inCFSv2 needs to be rectified, as it significantlymodulates

the monsoon intraseasonal variability and associated

rainfall (e.g., Roxy et al. 2013).Apart from this, theCFSv2

subsurface temperature response to El Niño–Southern
Oscillation is stronger and deeper in the TIO than in the

tropical Atlantic (Wang et al. 2013). Further, deep

thermocline and warm subsurface temperature biases in

the equatorial IO are reported in CFSv2 (Achuthavarier

et al. 2012; Chowdary et al. 2016a). However, none of

the previous studies examined the causes for the TIO

subsurface warm bias in CFSv2. Understanding the mech-

anisms responsible for subsurface ocean temperature bias

would help to improve the thermodynamics and dynamics

of the coupledmodel. In this study, emphasis is given to the

annual-mean temperature bias and its vertical distribution

over TIO. The rest of the paper is organized as follows:

Section 2 provides model details and methodology. Model

subsurface temperature biases are discussed in section 3.

Processes associated with the subsurface biases are pre-

sented in section 4. Section 5 is summary and discussion.

2. Model and methodology

CFSv2 is a fully coupled ocean–atmosphere–land

model with advanced physics and increased/finer reso-

lution (Saha et al. 2014). The NCEP Global Forecast

System (GFS) is the atmospheric component with hor-

izontal resolution T126 (;100 km) and 64 sigma layers

vertically. The oceanic component is the Modular

OceanModel, version 4 (MOM4P0; Griffies et al. 2004),

from the Geophysical Fluid Dynamics Laboratory;

zonal resolution is 0.58, and the meridional resolution is

0.258 between 108S to 108N and gradually changes

poleward through the tropics up to 0.58. The model is

integrated over a period of 100 yr, and the climatology of

the last 60 yr is used for the present study. More details

of CFSv2 integrations are provided by Roxy (2014).

European Centre for Medium-Range Weather Fore-

casts (ECMWF) interim reanalysis (ERA-Interim; Dee

et al. 2011) surface winds are used to explore wind biases

in the coupled model. CFSv2 ocean component is eval-

uated against World Ocean Atlas 2013 (WOA13) tem-

perature and salinity (Locarnini et al. 2013; Zweng et al.

2013) andECMWFOceanReanalysis System 4 (ORAS4;

Balmaseda et al. 2013) three-dimensional ocean currents.

ORAS4 climatology is prepared based on the period

1979–2014. Nyadjro and McPhaden (2014) demonstrated

thatORAS4 reproduces the horizontal current field in the

TIO region reasonably well as compared to in situ ob-

servations. K-profile parameterization (KPP; Large

et al. 1994) vertical mixing scheme is used in both CFSv2

and the model of ORAS4. The ocean mixed layer depth

(MLD) is computed based on density variations deter-

mined from the corresponding temperature change of

0.88C from the surface (Kara et al. 2003). The 208C
isotherm depth (D20) is utilized as a proxy for thermo-

cline in the TIO. To understand the influence of stabil-

ity, buoyancy, or Brunt–Väisälä frequency N2, energy

required for mixing (ERM) and vertical turbulent eddy

heat flux (VTHF) are computed. In addition to this, the

vertical shear of horizontal currents is also computed

to understand the mixing in CFSv2 and is compared to

ORAS4. The equations used for understanding the

physical mechanisms related to subsurface temperature

bias are provided below:
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Horizontal and vertical advection includes the

zonal advection term u(›T/›x), and (5)

meridional advection term y(›T/›y) . (6)

Here, g is acceleration due to gravity (9.8m s22), r is

density of seawater (1029 kgm23), T is temperature

(8C), rs is surface layer density (kgm
23), rb is bulk layer

density (kgm23), h is MLD (m), Cp is specific heat of

seawater (4 3 103 J kg21 8C21), Kh is vertical eddy dif-

fusivity (m2 s21) for ocean based on KPP, g is nonlocal

transport (8Cs21) term (Griffies 2012), u is zonal ve-

locity (m s21), and y is meridional velocity (m s21).

Vertical shear and other components are computed first

at each grid point for each month and then the annual

mean is computed and an area average performed to

complete the analysis.

3. TIO subsurface temperature bias in CFSv2

The cold bias in TIO SST is common to almost all

phase 5 of the Coupled Model Intercomparison Project

(CMIP5) climate models (Li and Xie 2012, 2014; Wang

et al. 2014; Sandeep and Ajayamohan 2014; Sayantani

et al. 2016) and in CFSv2 (Fig. 1a). In addition to the

surface cold bias, strong warm bias below the thermo-

cline is apparent in CFSv2 (Figs. 1b–d). Temperature

bias in CFSv2 is calculated with respect to WOA13.

Subsurface temperature bias in CFSv2 is more than 38C
over the western equatorial IO, Arabian Sea, and south-

east TIO regions. It confirms that CFSv2 suffers from a

severe subsurface warm bias over the entire TIO.On the

other hand, surface salinity bias is positive in the entire

TIO region with the maximum being located over the

Bay of Bengal (Fig. 1e). Excessive evaporation rather than

insufficient precipitation in CFSv2 are mainly responsible

for positive surface salinity bias over theTIO (Parekh et al.

2016; Chowdary et al. 2016b). Subsurface (;100 to 200m)

salinity bias ismaximumover theArabian Sea (Figs. 1e–h).

Annual-mean spatial distribution of MLD reveals the

existence of deeper MLD in CFSv2, as compared to

observations in the TIO except over the eastern and cen-

tral equatorial IO (Fig. 2a). CFSv2 also displays strong

positive bias in thermocline depth (D20) over theArabian

Sea and southern TIO (Fig. 2b). These deep MLD and

D20 in the model indicate misrepresentation of vertical

thermohaline structure and mixing in CFSv2.

The vertical structures of temperature, salinity, and

density in the TIO are the defining features for many

oceanic processes. The annual-mean vertical profiles of

temperature, salinity, and density averaged over the

TIO are shown in Figs. 3a–c, respectively, for CFSv2 and

WOA13. Analysis of these vertical profiles reveals per-

sistent cold bias of up to 18C in the upper 80m in CFSv2

(Fig. 3d) and warm subsurface bias exceeding 28C
around 175m, which is consistent with the spatial tem-

perature bias (Fig. 1). Overestimation of salinity aver-

aged over TIO (Fig. 3b) is noted in the upper ocean and

which is clearly reflected in the bias as well (Fig. 3e).

Salinity bias is slightly higher around 175-m depth sim-

ilar to temperature bias. Such large TIO subsurface

temperatures and salinity biases in CFSv2 affect the ver-

tical density structure (Fig. 3c). In fact, the model density

indicates positive biases in the upper 100m and negative

biases below that, as compared to WOA13 (Fig. 3f).

Further regional analysis of vertical profiles of the biases

over the Arabian Sea (68–238N, 508–728E), the Bay of

Bengal (68–208N, 808–958E), eastern equatorial Indian

Ocean (08–108S, 908–1008E), and southwestern Indian

Ocean thermocline dome region (58–108S, 508–808E) are
in general consistent with the TIO mean bias nature

(Figs. 3g–i), though their magnitudes are different for

different basins (e.g., Chowdary et al. 2016b). This in-

dicates that the nature of the vertical structure of bias is

independent of the regional effect but could be due to

discrepancy in the upper-ocean physics in the model.

Hence, the unexplored factors responsible for subsurface

biases are to be explored in detail.

4. Mechanisms associated with the subsurface bias

As the density bias of the upper ocean (subsurface) is

more positive (negative) than observations in CFSv2, we

have examined the Brunt–Väisälä frequency N2, which

quantifies the stability of the stratified fluid (Gill 1982).

Figure 4a shows N2 profile of CFSv2 andWOA13 in the

TIO. The stability is relatively weaker in CFSv2 for the

upper 150m than the observed, which is apparent in

the bias as well (Fig. 4e). On the other hand, stability is

higher than WOA13 below 200m in CFSv2. Figure 4b

shows the ERM for the upper 500m. It is evident that

the ERM is underestimated in CFSv2 by up to 30%,

especially in 30- to 175-m depth (Fig. 4f). Figure 4c

displays the vertical shear of the horizontal current in
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ORAS4 and CFSv2. Overestimation of shear in CFSv2 in

the top 500m is evident. It is important to note that the

bias is about 200%(Fig. 4g) at around 150- to 250-mdepth.

Similar analysis is also carried out for the various regions

of TIO, since horizontal currents in the TIO are complex

and have strong regional dependency. Thus, we have ex-

amined the vertical shear of horizontal currents in the

Arabian Sea, Bay of Bengal, and equatorial Indian Ocean

FIG. 1. CFSv2 annual-mean temperature (white contours; 8C) and bias (black contours and shaded; 8C) at depths
(a) 5, (b) 105, (c) 205, and (d) 459m over the TIO region. (e)–(h) As in (a)–(d), but for salinity (psu). Bias is

calculated as the difference between CFSv2 and WOA13.
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region (figure not shown) and found that bias in the

vertical shear of horizontal currents in different basins

also showed similar characteristics as in TIO, though

the magnitude of the shear is different. Strong shear

enhances the mixing of the upper ocean and weakens

stability, leading to subsurface warming in the TIO.

This excess mixing supports positive salinity bias in the

upper few hundred meters. Further, vertical turbulent

heat flux (Fig. 4d) has been computed using the

KPP-based vertical eddy diffusivity Kh profile ob-

tained from CFSv2. To estimate bias in CFSv2 VTHF,

we have generated Kh from stand-alone ocean model

MOM5 (considered as a reference profile), which is

forced with observed winds. According to Griffies

(2012), the nonlocal transport term g contributes to

VTHF along with local term ›T/›z [(4)] and hence is

included in the computation. It is clearly evident from

Figs. 4d and 4h that the CFSv2 has overestimated

VTHF in the upper 80m. This is consistent with the

surface cold bias and subsurface warm bias in the

model. Thus, VTHF also may partly contribute to

warm subsurface bias over the TIO.

To check whether the overestimation of shear is

caused by atmospheric processes or oceanic processes,

we analyzed vertical shear of horizontal currents in a

stand-alone ocean model (MOM5, the ocean compo-

nent of the coupled model, which is forced by observed

atmospheric forcing) and the NCEPGlobal Ocean Data

Assimilation System (GODAS). Though temperature

and salinity bias is weaker than CFSv2 in stand-alone

models, strong vertical shear bias is present (figure not

shown). Strong vertical shear in the horizontal current is

responsible for excessive mixing in the stand-alone

ocean model. Further, Fousiya et al. (2015) also re-

ported overestimation of vertical shear in ocean models

as well as reanalysis products, which assimilate observed

salinity and temperature data. Hence, overestimation of

vertical shear is due to the inherent ocean model

mixing limitations. Altogether, strong vertical current

shear is primarily responsible for the subsurface warm

bias. The resultant subsurface warming and surface

cooling due to heat flux bias further weaken the

stratification and provide a positive feedback between

weaker upper-ocean stratification and subsurface

warming.

The above discussion supports the fact that strong

vertical shear and weak stratification are contributing

to warm subsurface temperature and positive salinity

bias in the model. However, it is important to examine

the contribution from zonal and meridional advection,

respectively, from eastern [Indonesian Throughflow

(ITF)] and southern boundaries of the TIO. It is well

established that many coupled models have large un-

certainty in representing ITF (e.g., Sen Gupta et al.

2016). Figure 5a shows the depth–latitude zonal cur-

rent along the eastern boundary (averaged between

1108 and 1158E) for CFSv2 and ORAS4. It is clearly

evident that the model is able to capture the mean

zonal current structure associated with the ITF at the

eastern boundary. However, bias in the zonal current

shows stronger westward flow in CFSv2 than in

ORAS4 for the upper 225m between 108S to 128S
(Fig. 5b). Since the subsurface ITF water is warmer

than that of the Indian Ocean (e.g., Zhou et al. 2008;

Valsala and Maksyutov 2010), anomalous westward

flow may have some contribution to subsurface warm

temperature bias in TIO around 108S (Figs. 1b–d).

Weaker meridional current bias at the southern

boundary is also seen in the model (Figs. 5c,d), sug-

gesting that the excess warm water that entered from

the throughflow is not completely taken out of TIO

through the southern boundary. Thus, apart from the

FIG. 2. (a) CFSv2 annual-mean mixed layer depth (white contour; m) and bias (black contours and shaded; m)

and (b) mean thermocline (D20, 208C isotherm) depth (white contour; m) and bias (black contours and shaded; m).

Biases are calculated with respect to WOA13.
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vertical mixing and weak stability, excess warm water

advection from ITF also plays a partial role in the sub-

surface warm bias over the southern TIO. Contribution of

advection through the eastern (at 1008E) and southern

(208S) boundaries to TIO temperature is illustrated in

Figs. 5e and 5f. Contribution of zonal advection at the

eastern boundary is up to 0.78Cs21 (maximumat 150m) in

CFSv2 and 0.48Cs21 (maximum at 50m) in ORAS4.

However, actual TIO subsurface temperature bias is about

3 times that of ITF contribution. Meridional advection

through the southern boundary is consistent withORAS4.

Therefore, the subsurface warm bias is mainly caused by

excess vertical shear of horizontal currents’ induced

downward transfer of heat.

FIG. 3. Vertical profiles in upper 500m [annual-mean area averaged in the TIO region (208S–208N, 408–1008E)] for CFSv2 andWOA13.

(a) Temperature (8C), (b) salinity (psu), and (c) density (kgm23). (d)–(f) As in (a)–(c), but for bias. (g)–(i) As in (d)–(f), but for different

regions of TIO [Bay of Bengal (BOB), Arabian Sea (AS), southwest Indian Ocean thermocline dome region (SWIO), and east equatorial

Indian Ocean (EEIO)].
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The wind-induced changes in thermocline depth can

alter subsurface temperatures (Xiang et al. 2012).Annual-

mean surface wind speed from CFSv2 and ERA-Interim

are provided in Figs. 6a and 6b, and it is found that the

model is able to reproduce the spatial patterns of winds

reasonably well. Figure 6c illustrates wind speed and wind

vector bias over the TIO region. Note that model wind

bias is calculated as the difference between CFSv2 and

ERA-Interim. Positive wind speed bias is seen over most

of the TIO. Thus, the strength of wind stirring is margin-

ally higher and may affect the vertical mixing in the TIO,

which in turn could influence the subsurface temperature

bias. CFSv2 annual-mean wind bias exhibits strong east-

erlies over the western equatorial IO and anticyclonic

circulation over the Arabian Sea and Bay of Bengal

(Fig. 6c). This equatorial easterlywind bias could be due to

improper representation of boreal summer monsoon cir-

culation (e.g., Li et al. 2015a,b). Further, Ekman pumping

shows negative bias in most of the north IO, suggesting

that Ekman convergence is strong in CFSv2 compared to

observations (Fig. 6d). Anomalous convergence deepens

the thermocline due to downwelling and favors subsurface

warming. Surface wind bias over the central-southern

TIO is southerly and the Ekman pumping bias is weak

(Figs. 6c,d). Vertical velocity averaged from 100 to 150m

further supports this (Figs. 6e,f). However, much

stronger upward velocity (positive) is noted over the

equatorial region in CFSv2 as compared to ORAS4,

which is consistent with wind bias. CFSv2 displays up-

ward velocity somewhat similar to that of ORAS4 over

the southwest TIO region (Figs. 6e,f). Overall, CFSv2

displays dominant upward velocities at the equator and

downward velocities in the northern and southern TIO.

The extent of penetration of anomalous vertical

velocities in CFSv2 is important for the subsurface

temperature bias point of view. The depth–longitude

plot of vertical velocities averaged between 208S to

208N for CFSv2 and ORAS4 are presented in Figs. 7a

and 7b, respectively. The vertical velocity is much

deeper and stronger in CFSv2 compared to ORAS4,

especially west of 608E. This suggests that CFSv2 has

stronger mixing that extends to a deeper level than in

ORAS4, which favors subsurface warming over the

TIO. Similarly, the depth–latitude plot also shows that

FIG. 4. Vertical profiles of (annual-mean area averaged in the TIO region) (a) Brunt–Väisälä frequency (N2; 1022 s22), (b) ERM (Jm22),

(c) square of the vertical shear of horizontal currents (1024 s22), and (d) vertical turbulent heat flux (Wm22). (e)–(h) As in (a)–(d), but for

bias. Biases inN2 profiles and ERMof CFSv2 are calculated with respect toWOA13. In the case of vertical shear, CFSv2 bias is calculated

with respect to ORAS4. Vertical turbulent heat flux bias is with respect toWOA13/MOM5. Note that biases are normalized with respect

to observations and are presented in percentage except for vertical turbulent heat flux.
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the upper-ocean meridional cell is deeper in CFSv2

compared to ORAS4 (Figs. 7c,d). This further sup-

ports the role of vertical advection in affecting the

subsurface temperatures in the model.

In the case of SST, studies show that the cold bias

over the TIO is usually associated with bias in MLD

and heat flux (e.g., Wajsowicz 2007). Figure 8a shows

the contribution of heat flux to mixed layer temperature/

SST in CFSv2. As compared to the observations,

contribution of heat flux to mixed layer temperature in

the model is less over most of the TIO (Figs. 8a,b). As

the MLD in CFSv2 is deeper than in observations, the

model MLD is replaced by observed MLD, while es-

timating the contribution of MLD/mixing on mixed

FIG. 5. Depth–latitude plot of mean zonal current averaged between 1108 to 1158E for (a) ORAS4 (shaded; m s21)

and CFSv2 (contours; m s21) and (b) bias (difference between CFSv2 and ORAS4). (c),(d) As in (a) and (b), but for

depth–longitude plot for mean meridional current averaged between 208S to 258S. Contribution to temperature

(vertical profiles) from (e) mean zonal advection at eastern boundary (1008E) averaged from 58 to 208S (1027 8C s21)

and (f) mean meridional advection (1027 8C s21) at southern boundary (208S) averaged from 558 to 1008E for CFSv2

and ORAS4.
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layer temperature, and is shown in Fig. 8c. Heat flux–

only contribution to mixed layer temperature shows

(Fig. 8d) negative contribution in CFSv2 over most of

the southern TIO and west coast of India, and in the rest

of the regions, contribution is positive. Figure 8e sug-

gests that mixing also plays an important role in cooling

upper-ocean temperature in CFSv2 over the TIO, ex-

cept over the eastern equatorial IO and southeast TIO.

The combined effect of heat flux and mixing on mixed

layer temperature is displayed in Fig. 8f, which is high

(negative) over most of TIO. This analysis suggests that

deep MLD in CFSv2 contributes to about 35% to 40%

of the actual mixed layer temperature/SST cold bias in

most of the TIO in CFSv2. TIO basinwide cold SST bias

in CFSv2 is also associated with excess evaporation due

to dry troposphere and underestimation of cloud

amount (Hazra et al. 2015; Pokhrel et al. 2016; Chowdary

et al. 2016a). In many climate models, tropical-wide

cold SST biases are mainly due to uncertainties in

cloud amount (Lin 2007; Li and Xie 2012). On the

other hand, warm subsurface temperature is attrib-

uted to excessive upper-ocean mixing induced by

FIG. 6. Annual-mean surface wind speed (contour and shaded; m s21) and wind vectors (m s21) for (a) CFSv2 and

(b) ERA, (c) bias of wind speed (contour and shaded;m s21) andwind vectors and (d) Ekmanpumping velocity bias

(contours and shaded; 1026 m s21), and (e) CFSv2 vertical velocity (contour and shaded; 1024 m s21) averaged

between 100 and 150m. (f) As in (e), but for ORAS4.

SEPTEMBER 2016 CHOWDARY ET AL . 2871



vertical shear in the horizontal current and weaker

stratification and to some extent from ITF warm

water advection and poor representation of winds in

the model.

5. Summary and discussion

Subsurface temperature may provide a source of

memory for predicting coupled ocean–atmosphere

modes (Jiang et al. 2013; Luo et al. 2007), which has

considerable impact on monsoon and the tropical cli-

mate variability. Thus, understanding the subsurface

temperature biases and associated mechanisms in a

coupled model is important. The present study ad-

dresses the mechanisms that are responsible for the

anomalous TIO warm bias in the subsurface in

CFSv2, a coupled model widely used for monsoon

forecast.

Cold bias in the upper 80m and warm bias below in

the TIO region are typical features of CFSv2 over the

TIO region. Subsurface temperature bias is maximum

around 175-m depth with values exceeding 28C. Apart

from this, the vertical profiles of salinity and density

display anomalous surface and subsurface bias in

CFSv2. Analysis reveals that strong vertical shear in

horizontal currents in the model paves the way for a

deeper penetration of the warmwaters, resulting in the

subsurface warm bias. Corroborated by anomalously

strong vertical shear with surface cold and subsurface

warm biases, the underestimated upper-ocean strati-

fication in CFSv2 is further feedback to subsurface

warm bias. These processes favor enhanced mixing of

warm surface water with subsurface water. Apart from

this, excess Indonesian Throughflow warm water

partly contributes to the southern TIO subsurface

temperature bias. The equatorial current bias in

CFSv2 is mainly due to the unrealistic representation

of winds over the TIO, which is in phase with sub-

surface warm bias. Surface winds also display strong

anticyclonic circulation bias over the Arabian Sea and

FIG. 7. (a) Depth–longitude plot of CFSv2 vertical and horizontal current (vector; m s21) and vertical current

(shaded; 1024 m s21) averaged over 208S to 208N. (b) As in (a), but for ORAS4. (c) Depth–latitude plot of CFSv2

vertical and horizontal current (vector; m s21) and vertical current (shaded; 1024 m s21) averaged over 408 to 1008E.
(d) As in (c), but for ORAS4.
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Bay of Bengal. In response to wind bias, anomalous

Ekman convergence and associated downwelling helped

to sustain subsurface warming. Upper-ocean zonal and

meridional cells are found to be deeper in CFSv2 com-

pared to ORAS4. These further support the importance

of vertical processes in affecting the subsurface tem-

peratures in the model. Therefore, in order to improve

the vertical thermal structure of TIO in CFSv2, it is es-

sential to reduce the biases in vertical mixing processes.
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