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Introduction  

This supporting information provides further details on the observed data, CMIP5 historical 
simulations and the Earth System Model utilized in the study. It also includes additional figures 
validating the historical simulations with respect to observations, and the statistical techniques 
used. A detailed examination of the change in nutrients along with the changes in SST, 
stratification and chlorophyll is also provided. 
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Text S1. 

Observed Data. Though marine primary production can be assessed directly using field flux 
measurements, chlorophyll pigment concentration measured through satellites is used as a 
convenient indicator of phytoplankton biomass and extent, as it represents the magnitude and 
variance in marine primary production and captures the first order changes in phytoplankton 
biomass [Ryther and Yentsch, 1957]. These satellite observations, which are mostly based on the 
visible bands of the radiance spectra (412-555 nm), lack consistent and accurate measurements 
of surface chlorophyll whenever cloudy conditions persist, which of course, is an integral part of 
the Asian summer monsoon season. Though seasonal and monthly mean composites can be 
derived from satellite data to some extent, it is challenging to derive robust signals of long-term 
trends of chlorophyll over the Indian Ocean because the current availability of satellite data is 
limited to a fairly short period since the satellite era [Boyce et al., 2010; Rykaczewski and Dunne, 
2011]. Studies suggest that the number of years required to detect a trend above the natural 
variability in most of the global oceans is 50-60 years, though a shorter period of 20-30 years could 
be used to extract the trends in the tropical oceans including the western Indian Ocean [Beaulieu 
et al., 2013; Henson et al., 2010]. The recently available satellite data blended from the multiple 
sensors of satellites bring the number of years of continuous data up to 16 years, bringing it close 
to the required trend detection time. 
 

The chlorophyll data is obtained from version 2 of the European Space Agency’s Ocean 
Color-Climate Change Initiative (OC-CCI) [Sathyendranath et al., 2016]. The OC-CCI uses 
processors for atmospheric correction and retrieval of in-water properties on the basis of round-
robin comparison of candidate algorithms [Brewin et al., 2015; Müller et al., 2015]. The OC-CCI 
chlorophyll product is generated from merged normalized remote-sensing reflectances from 
SeaWiFS, MODIS-Aqua, and MERIS satellites at 4 km-by-4 km horizontal resolution, band shifted 
to SeaWiFS wavebands. The POLYMER algorithm used by OC-CCI for processing MERIS data 
[Steinmetz et al., 2011] is able to retrieve usable data under sun-glint conditions, which improves 
the coverage in the Arabian Sea, especially during the summer monsoons. The OC-CCI data is 
available for the period 1998-2013. However, the last couple of years (2012 and 2013) suffer from 
data gaps (less than 50% coverage) in the Arabian Sea, which could introduce spurious trends. 
These two years are presented in the analysis for an overview, but are not utilized for estimating 
the trends and correlation coefficients in the current analysis. 
 
 In order to validate the robustness of the satellite data, in-situ data from Teledyne/Webb 
APEX - Argo floats deployed in the Arabian Sea are used [Ravichandran et al., 2012]. These floats 
were equipped with WETLabs ECO FLNTU package for measuring chlorophyll-a fluorescence (470 
nm) with an accuracy of 0.02 mg m-3. The chlorophyll was measured from about 10 m to 2000 m 
depth, with a vertical resolution of about 5 m in the top 150 m. OC-CCI data is averaged over a 
region within the trajectories of the Argo floats (60-70°E, 5-15°N) and compared for the period 
during which in-situ data is available (year 2010). It should be taken into account that while the 
OC-CCI data represents satellite measurements at the sea surface, the in-situ data used for 
comparison is at about 10 m depth. Also, the in-situ data is measured at daily intervals, capturing 
fine details of the variability. Regardless of these limitations, both the time series show a high 
correlation (r = 0.92), statistically significant at 95% confidence level (Figure S1). There are slight 
discrepancies in the magnitude, which are probably due to the differences in the depth, frequency 
and location of these measurements. Nevertheless, OC-CCI captures the seasonal variability of 
the chlorophyll anomalies in the Indian Ocean with high fidelity, and indicates that it is useful for 
examining the climate driven trends in the basin. 
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Hydrographic data including SST and density are obtained from the Hadley Centre EN4 
dataset containing Argo observations. Ocean stratification is estimated from the density 
difference between the surface and a depth of 200m, using a stability parameter, 

 

𝐸 = −
1
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𝜕𝑧
,  

 
where E is the static stability parameter (m−1), ρ is the density (kg m−3) of the water and z 

is the depth (m) [Behrenfeld et al., 2006; Narvekar and Prasanna Kumar, 2014].  
 
Sea surface (10 m) wind speed at 0.25° grid resolution is obtained from the multi-satellite 

blended sea winds provided by NOAA/NCDC. Wind stress curl is estimated using 
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where 𝜏𝑥and 𝜏𝑥𝑦 denote the eastward and northward components of wind stress. A 

positive wind stress curl indicates wind induced upwelling, and vice-versa. 
 

 

Text S2. 

CMIP5 Historical Simulations. In order to ascertain the role of a warming Indian Ocean on the 
long-term chlorophyll trends, a suite of historical simulations by earth system models 
participating in the Coupled Model Intercomparison Project (CMIP5) are used (Table S1). These 
historical simulations are compared with the observations for the same period (1998-2005) for 
their ability to reproduce the spatial distribution of mean climatology and interannual variability 
of chlorophyll concentrations in the Indian Ocean (Figures S2-S4). Five good models are selected 
based on their skills in realistic simulation of the mean and variability and pattern correlations (r 
> 0.4) over the north Indian Ocean. Ensemble means of these five models, namely the NOAA-
GFDL-ESM2M, NOAA-GFDL-ESM2G, MPI-ESM-LR, MPI-ESM-MR and IPSL-CM5A-MR are used to 
examine the trends in the chlorophyll concentrations. Pattern correlation coefficients (PCC) 
computed between the summer mean chlorophyll values simulated by the models and the 
observations for the same period for the north Indian Ocean (50-100°E, 5-25°N) exhibits the 
highest correlation coefficients for the MPI-ESMs (r > 0.5), larger than the PCC for the ensemble 
mean (r = 0.39). This means that the MPI-ESMs behave like the ensemble, but have a larger fidelity 
in representing the spatial distribution of chlorophyll variability in the Indian Ocean.  

 
MPI-ESMs simulate the mean climatology of chlorophyll concentrations with less bias and 

realistic spatial distribution in the Indian Ocean, particularly in the Arabian Sea where the primary 
production as well as the surface warming is most prominent. However, the model has an obvious 
positive bias in the simulated chlorophyll concentrations in the equatorial Indian Ocean. This 
could be due to a model misinterpretation of the equatorial dynamics in this region—as upwelling 
driven by equatorial easterlies are not a robust feature of the Indian Ocean—which climate 
models very often fail to reproduce [McCreary et al., 2009]. Among the two versions of MPI-ESMs 
used here, the lower-resolution (LR, r = 0.59) exhibits a pattern correlation higher than that of the 
higher-resolution (MR, r = 0.50). However, the higher-resolution model is chosen for further 
analysis as it has relatively lesser bias in most of the Indian Ocean including the equatorial regions, 
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as well as the Bay of Bengal and western Indian Ocean (Figure S3). Also, MPI-ESM-MR features 
one of the highest ocean resolutions (0.4˚) among all the available CMIP5 models, and the 
temperature biases are smaller in MR, compared to LR.  The MR version of MPI-ESM doubles the 
number of levels in the atmosphere from 47 to 95 and decreases the horizontal grid spacing of 
the ocean from nominally 1.5° to 0.4°, hence, featuring a quasi-uniform, eddy-permitting global 
resolution, compared to the LR configuration [Jungclaus et al., 2013]. Hence MPI-ESM-MR is used 
as a representative model, based on the selected set of CMIP5 historical simulations, for extensive 
process study. 

 
The MPI-ESM-MR model is found to be skillful in simulating the mean state of the physical 

variables including SST and winds in the Indian Ocean [Prasanna, 2015], which are crucial in 
driving the chlorophyll variability on both interannual and long-term climate time scales in a basin 
which is monsoon driven (Figure S5). Pattern correlations between the model simulations and 
observations yield significant correlation coefficients for SST (r = 0.88), winds (r = 0.95) and static 
stability (r = 0.93), at 95% confidence levels. The model skillfully simulates the magnitude 
(maximum 1.0°C and above) and spatial distribution of the observed Indian Ocean SST trends 
during 1950-2005, with the maximum warming spread over the west-central Indian Ocean 
(Arabian Sea) and minimum over the southeastern part of the basin. Historical data of chlorophyll, 
SST, winds and density for the period 1950-2005, simulated by MPI-ESM-MR is utilized to examine 
the climate driven trends in marine primary productivity. 

 
It is however to be cautioned that CMIP5 historical simulations have some obvious 

limitations. Firstly, they are not hindcasts, but simulations forced with the historical changes in 
greenhouse gas mixing ratios (radiative forcing). CMIP5 models are typically spun up for the pre-
industrial CO2 levels and integrated forward and thus possess their own internal variability when 
it comes to seasonal-to-interannual and longer timescale variabilities with no correspondence to 
actual events such as El Niño-Southern Oscillation (ENSO) or Indian Ocean Dipole (IOD) in 
observations. Hence the historical simulations of chlorophyll would represent the response to 
increasing temperatures alone, but will not have the year-to-year variability as in observations (to 
be precise, coincident interannual variability). These CMIP5 simulations can hence be compared 
for climatologies and trends but not for year-to-year variabilities. Secondly, while the 
observations are of very high spatial resolution (less than 0.1° at source, 0.25° used here) and 
include small scale variabilities, the model historical simulations are of relatively lower resolution 
(0.4°~0.5°) and have a low skill in resolving sub-mesoscale eddies which are prominent in these 
regions. This means that while the model will be able to represent trends and variabilities on a 
large spatial scale, it will not be able to do so for small regions. 

 
Marine biogeochemistry in MPI-ESM is represented by the Hamburg Ocean Carbon Cycle 

(HAMOCC) model [Ilyina et al., 2013]. HAMOCC simulates the oceanic carbon cycles along with 
other biogeochemical elements, and prognostically computes up to seventeen tracers in the 
water column. Marine biology dynamics in HAMOCC is based on an extended NPZD (nutrient, 
phytoplankton, zooplankton and detritus) model, which connects biogeochemical cycles and 
trophic levels through the uptake of nutrients and re-mineralization of organic matter. 
Phytoplankton growth in the model follows Michaelis-Menten kinetics, and depends on 
temperature, light, and nutrient availability. Inorganic carbon chemistry in HAMOCC mainly 
follows Maier-Reimer and Hasselmann [1987] with a revised estimation of chemical constants 
[Goyet and Poisson, 1989]. HAMOCC also incorporates a simplified marine sulfur cycle which 
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includes the production, bacterial consumption, photolysis, and sea-air gas exchange of 
dimethylsulphide. 

 

Text S3. 

IITM Earth System Model. In order to delineate the causal role of SST warming on the nutrient 
mixing and the chlorophyll concentrations, a sensitivity experiment using the standard 
configuration of an earth system model with interactive biogeochemistry, the IITM-ESM [Swapna 
et al., 2015] is used. The oceanic component (GFDL MOM4p1) has a 0.25–0.5° horizontal 
resolution, 40 vertical levels and includes an ice model. The atmospheric component (NCEP GFS) 
is at T126 (~0.9°) horizontal resolution and 64 sigma-pressure hybrid levels. The oceanic 
component is coupled with a biogeochemistry module, TOPAZ [Dunne et al., 2010]. The model 
exhibits reasonable skills in simulating the monsoonal characteristics over the Indian Ocean, 
including that of SST and chlorophyll [Swapna et al., 2015]. The coupled configuration of IITM-
ESM is time integrated over a period of 50 years, and serves as the reference run (ESMCTL). 
Ensembles (10 members) of short integrations for 10 different summer monsoon seasons (June-
September) from the (ESMCTL) were performed by adding temperature anomalies to the SSTs in 
the Indian Ocean (ESMIO). Positive anomalies of the order of 1.5°C was added over the region, in 
such a way that it tapers out by the limits of the domain (50-65°E, 5°S-10°N). The difference 
between ESMIO and ESMCTL is taken as the model chlorophyll response to the summer warming 
over the Indian Ocean. Figure S6 shows the model-simulated chlorophyll anomalies in response 
to a warming simulated over the western Indian Ocean. The response corresponds to an SST 
increase of about 1.0°C added to the entire Indian Ocean basin to represent the basin-wide 
warming, with a maximum increase of 1.5°C in the west-central region, similar to the observed 
trends during the northern summer. 
 
  



 

 

6 

 

 

Figure S1. Temporal evolution of chlorophyll-a (mg m-3) during the year 2010, derived from an 
Argo float at 10 m depth (blue) and OC-CCCI data (red) for a region where the data points coincide 
in the Arabian Sea (60-70°E, 5-15°N). The correlation coefficient (r = 0.92) is significant at 95% 
confidence level, using a standard two-tailed Student’s t-test.    
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Figure S2. Climatology of June-September mean chlorophyll concentration distribution obtained 
from CMIP5 models and observations, for the years 1998-2005.  

  

Summer mean Chlorophyll in CMIP5 historical simulations and observations
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Figure S3. Bias (model – observations) in the CMIP5 simulations mean chlorophyll concentration 
distribution, for the years 1998-2005. 

  

Summer mean Chlorophyll bias in CMIP5 historical simulations
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Figure S4. Interannual variability in June-September mean chlorophyll concentration distribution 
obtained from the selected CMIP5 historical simulations and observations, for the years 1998-
2005. 

  

Summer Chlorophyll interannual variability in selected CMIP5 historical simulations and observations
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Figure S5. Climatology of June-September (a, b) mean SST (colors, °C) and wind speed (contours, 
m s-1), and (c, d) SST trends (°C per 56 years), obtained from observations and MPI-ESM-MR 
historical simulations, for the years 1950-2005. Color shades in c and d denote trends that are 
significant at 95% confidence levels. 

  

SST and Wind Speed (June-Sept mean) climatology
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Figure S6. Model simulated (a) SST (°C), (b) static stability, (c) chlorophyll (mg m-3), and (d-f) nitrate 
(µmol L-1), phosphate (10-1 µmol L-1) and silicate (µmol L-1) anomalies in response to warming over 
the Indian Ocean, for June-September. The model simulated anomalies are estimated from the 
sensitivity run where SST anomalies of the order of 1.5°C is introduced over the western Indian 
Ocean (CFSv2IO), with respect to a model control run (CFSv2CTL). 

  

IITM-ESM response to warming

a SST b Static Stability c Chlorophyll

d Nitrate e Phosphate f Silicate
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Figure S7. Annual catch rates (N/100 hooks) for the three principle species of tuna which 
comprises of 75% of all fishery products, caught by Japanese long-liners in the Indian Ocean. Data 
is obtained from the Indian Ocean Tuna Commission (IOTC). 

  

Annual catch rates of tuna (N/100 hooks) in the Indian Ocean
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Figure S8. Difference in summer (a) SST (°C) and (b) chlorophyll (mg m-3), between future 
projections (2045-2100) and historical simulations (1950-2005) of MPI-ESM-MR. 

  

 a SST difference between [2045-2100] and [1950-2005]  b Chlorophyll difference between [2045-2100] and [1950-2005]

MPI-ESM-MR projected changes
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# CMIP5 Model Atmosphere Ocean Ocean BGC Reference PCC 

1 GISS-E2-H-CC 40 lev, 2.5˚/2˚ 26 lev, 1˚/1˚ NOBM Gregg and Casey 
[2007] 

0.21 

2 GISS-E2-R-CC 40 lev, 2.5˚/2˚ 32 lev, 1.25˚/1˚ NOBM Gregg and Casey 
[2007] 

0.09 

3 CESM1-BGC 26 lev, 
0.25˚/0.94˚ 

60 lev, 1.125˚/0.27˚ 
-0.53˚ 

BEC Moore et al. [2004] 0.27 

4 CMCC-CESM 39 lev, 3.8˚ 31 lev, 0.5-2˚ PELAGOS Vichi et al. [2007] 0.39 

5 NOAA-GFDL-
ESM2M 

24 lev, 2.5˚/2.0˚ 50 lev, 0.3-1˚ TOPAZ2 Dunne et al. [2013] 0.44 

6 NOAA-GFDL-
ESM2G 

24 lev, 2.5˚/2.0˚ 63 lev, 0.3-1˚ TOPAZ2 Dunne et al. [2013] 0.44 

7 CanESM2 35 lev, 2.8˚/2.8˚ 40 lev, 1.4˚/0.9˚ NPZD [Denman and 
Pena, 1999] 

Zahariev et al. [2008] 0.33 

8 MRI-ESM1 23 
lev,1.125˚/1.12
1˚ 

51 lev, 1˚/0.5˚ NPZD [Oschlies, 2001] Adachi et al. [2013] 0.06 

9 HadGEM2-CC 60 lev, 1.2˚/1.9˚ 40 lev, 1˚/0.3-1˚ Diat-HadOCC Palmer and Totterdell 
[2001] 

0.37 

10 HadGEM2-ES 38 lev, 1.2˚/1.9˚ 40 lev, 1˚/0.3-1˚ Diat-HadOCC Palmer and Totterdell 
[2001] 

0.37 

11 MPI-ESM-LR 47 lev, 1.9˚ 40 lev, 1.5˚ HAMOCC5.2 Ilyina et al. [2013] 0.59 

12 MPI-ESM-MR 95 lev, 1.9˚ 40 lev, 0.4˚ HAMOCC5.2 Ilyina et al. [2013] 0.50 

13 CNRM-CM5 31 lev, 1.4˚ 42 lev, 1˚ PISCES Séférian et al. [2013] 0.03 

14 IPSL-CM5A-MR 39 lev, 1.2˚/2.5˚ 31 lev, 2˚/0.5-2˚ PISCES Séférian et al. [2013] 0.48 

15 IPSL-CM5B-LR 39 lev, 1.2˚/2.5˚ 31 lev, 2˚/0.5-2˚ PISCES Séférian et al. [2013] 0.15 

16 IPSL-CM5A-LR 39 lev, 1.9˚/3.8˚ 31 lev, 2˚/0.5-2˚ PISCES Séférian et al. [2013] 0.39 

 

Table S1. Details of the CMIP5 models having ocean biogeochemistry (BGC) component, providing 
historical simulations of chlorophyll concentration. Pattern correlation coefficient (PCC) between 
climatological summer means of the observations and CMIP5 historical simulations for chlorophyll 
concentrations during the period 1998-2005 is provided in the last column.   
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